氧化石墨烯/SBS复合材料及其改性沥青抗老化性能研究

来源 :长安大学 | 被引量 : 0次 | 上传用户:xiaofan8810060855
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在道路工程领域,SBS改性沥青因其优异的高低温性能而被广泛应用于高等级路面。然而,由于受热、光、氧等环境因素的影响,SBS改性沥青在混合料的制备及使用过程中易发生老化现象,致使其使用性能大幅下降。如何提高SBS改性沥青的抗老化性能已成为目前改性沥青领域亟待解决的重要技术问题。本文基于纳米材料性能特点和复合材料理论,利用氧化石墨烯(GO)纳米材料对SBS聚合物进行修饰,采用溶液共混法制备GO/SBS复合材料。随后对其进行热、光、氧耦合老化,通过热稳定性测试以及化学结构变化分析探究GO/SBS复合材料的抗老化性能;在此基础上,将不同氧化石墨烯含量的GO/SBS复合材料作为改性剂制备GO/SBS复合改性沥青,随后对其进行TFOT老化、PAV老化和UV老化处理,测试其基本技术性能。进一步地,采用DSR和BBR试验,研究不同老化状态下GO/SBS复合改性沥青的流变性质。最后,采用FM、FTIR和AFM测试技术分析不同老化状态下改性沥青微观结构的演变,探讨GO/SBS复合改性沥青的抗老化机理。GO/SBS复合材料的性能测试结果显示出老化后复合材料的热稳定性下降,并且微观上存在着分子链段的断裂和极性官能团的生成,氧化石墨烯的加入能显著提高SBS的抗老化性能。对于GO/SBS复合改性沥青,基本技术性能和流变性质测试结果均表明:氧化石墨烯含量提高后,改性沥青的高温稳定性增强,但低温抗裂性能有所削弱。在经过热氧老化与紫外老化后,GO/SBS复合改性沥青高温下复数模量增大,相位角和应变恢复率减小;低温状态下蠕变劲度增大,应力松弛能力下降。在微观结构方面,老化导致了沥青中GO/SBS复合材料的降解,羰基、亚砜基等极性含氧官能团生成,在微观形貌上表现为蜂状结构减小,表面均方根粗糙度下降。GO/SBS复合改性沥青老化过程中宏观性能与微观结构变化表明,随着氧化石墨烯含量的提高,改性沥青受热氧老化与紫外老化影响而导致的宏观性能和微观结构变化趋势均有所减小。结合SBS改性沥青的老化降解反应推测出GO/SBS复合改性沥青的抗老化机理主要包括限制分子链段热运动、吸收紫外光辐射、阻碍氧气的渗透以及抑制链式自由基反应进行四个方面。
其他文献
近年来,国内建设项目数量明显增加,竞争越来越激烈,项目的利润空间被压缩,市场中的大部分热力企业盈利能力偏弱,甚至一些企业长期处于亏损经营,为了改善这种不利的状况,本文以神东煤炭集团电缆改造工程为基础研究对象,通过分析工程的实施现状、成本管理和控制措施等,找出工程成本管理过程中存在的问题,据此提出降低工程成本的方案。主要内容如下:首先,本文介绍了研究背景和研究意义,在综述国内外学者成本管理相关研究成
镁作为现代工程应用中最轻质的金属材料,近年来它的应用范围及规模正逐年递增,这导致原镁的需求量也日益增长。中国作为产镁大国,制镁工艺以传统皮江法为主。该方法需要长时间维持极高的温度来保障其还原的效果,这会造成严重的能源浪费以及环境污染,同时高温条件也使得还原罐遭受严重损耗,提高了冶炼镁的成本。为了解决上述问题,亟待开发一种新型低温制备金属镁的方法。近年来,电流辅助技术在金属成型、陶瓷烧结等方面取得了
高等级公路由于线型技术要求和地形条件限制,不可避免地出现高边坡,其中一部分高边坡需要先加固后开挖,这就导致了对支挡结构物的扰动。目前针对开挖扰动过程对抗滑桩承载特性的影响研究较少,本文采用离心模型试验、数值仿真分析、理论计算等手段,对既有全埋式抗滑桩在开挖扰动过程中的承载特性开展系统研究,分析桩前土体坡度、开挖工况以及水平位置等因素对抗滑桩承载特性的影响规律,主要研究成果如下:(1)桩前土体坡度对
随着大型桥梁工程建造不断向海洋及深水区域延伸,深水桩基础也正朝向大直径化发展,然而恶劣的海洋深水环境、复杂地质条件、特殊装备及特殊工艺给深水大直径桩基础的建造施工带来巨大挑战。介于深水大直径钻孔桩施工风险事故频发以及所带来的严重后果,通过系统的研究从理论和技术两方面建立深水大直径钻孔桩的施工风险评估与控制体系已势在必行。本文研究依托于甬舟铁路西堠门公铁两用大桥桩基建造项目,其最大施工水深为60米,
关中平原是我国古丝路起始的一个核心区域,培育和发展关中平原的城市群,对于全面纵深推动“一带一路”的建设起着不可替代的的积极作用。在关中平原城市群和“一带一路”战略建设和发展过程中,交通运输体系既是基础,也是根本保障。因此,本研究应用复杂网络理论研究关中平原城市群陆路交通运输网络的建模、特征问题,应用数学优化模型分析陆路货运网络运输问题,以提高关中平原城市群陆路交通运输网络的质量和效率,支撑“一带一
水系锌离子电池具有安全性高、成本低和能量密度高等特点,在大型储能领域显示巨大优势,然而锌负极在充放电过程中仍存在枝晶生长、缓慢腐蚀及钝化等一系列问题,导致电池发生短路或胀气引发安全事故。此外,锰氧化物正极在电化学循环过程中存在相转变和锰溶解。因此,改善电极/电解液界面对提升电池性能具有重要意义。本论文主要通过正极材料表面改性,电解液中加入不同类型的添加剂来改善电极/电解质界面稳定性,进而提升水系锌
SiCp/Al复合材料作为一种结构材料,在外加载荷作用下易发生变形损伤甚至断裂。因此,为了了解其在载荷作用下的变形行为,本文对SiCp/Al复合材料的不同拉应力状态的损伤进行探究。首先通过拉伸试验获得不同损伤程度的试样;采用组织分析和纳米压痕测试表征复合材料在轧制方向、轧制法向和轧制横向上的微观结构以及在轧制法向的力学性能损伤参数,以明确微观组元和力学性能损伤的规律。基于试验结果,结合三维有限元模
随着信息化技术的迅猛发展及全球互联网的全面普及,海量数据也随之产生,怎样很好地管理和可靠地存储海量数据成为了目前需要解决的问题。实践生产发现,分布式存储技术是目前用于海量数据存储的最有效方法。但是存储海量数据的系统规模往往十分庞大,因为设备、磁盘故障等现象引发的分布式存储系统中节点失效也是十分常见的。为此,如何高效可靠地修复存储系统中的故障节点成为了研究重点。目前最常见的方法是在分布式存储系统中引
混凝土拌和物中水泥颗粒团聚现象,造成其微观不均匀,严重影响着混凝土质量的提高。为了解决混凝土搅拌微观不均匀性问题,现采用新的搅拌工艺——水泥净浆中高速搅拌技术,先将水泥和水在较高速度下搅拌成浆体,避免或减少水泥团粒的形成,以利于净浆浆液微观均匀性的提升,保证了骨料加入后的混凝土拌和物的微观均匀性,最终提高混凝土的各项性能。在对水泥净浆搅拌机理分析的基础上,以提高搅拌均匀性为目的,设计了中高速净浆搅
CFRP材料由于自身优异的性能,在桥梁工程领域受到了愈来愈多的关注。目前,国内外对CFRP材料加固混凝土的研究已经趋于成熟,而对CFRP材料加固钢结构,尤其是对其加固钢管柱的受压性能、稳定性改善方面的研究尚存在不足,并且至今国内尚未形成相对完善的包含CFRP材料粘贴加固方式在内的钢结构加固设计规范。故本文以钢桥中应用广泛的圆钢管柱作为研究对象,通过有限元分析的方法,对CFRP布加固圆钢管柱受压杆件