论文部分内容阅读
ABSCISIC ACID INSENSITIVE 3(ABI3)、FUSCA3(FUS3)和LEAFY COTYLEDON2(LEC2)属植物特有B3超家族的转录因子。它们被称为植物胚胎发育的主调控因子,不仅在种子的生长发育和成熟中发挥着重要的作用,也在植物体内的油脂代谢过程中起着重要的作用。尽管这三种转录因子的功能已经在某些植物中被鉴定,但它们在植物中的进化、结构和表达特征仍然没有被系统地研究。本研究利用生物信息的方法,在64种已经测序的植物中鉴定了ABI3、FUS3和LEC2基因,以及绿藻植物中特有的ABI3-like基因,并分析了它们的起源、分布、进化、复制、功能结构域、理化性质、顺式作用元件和基因表达特点。这些结果将有助于对植物中ABI3、FUS3和LEC2基因功能更加深入的了解,以及如何更好地调控植物的生长发育和脂肪酸的生物合成。本研究主要获得如下结果:1.对植物中ABI3、FUS3和LEC2基因的鉴定发现,在研究的64种植物中,绿藻植物中鉴定出2个ABI3-like基因,陆生植物中鉴定出76个ABI3基因;在绿藻、苔藓和蕨类植物中都没有鉴定到FUS3基因,只在被子植物中鉴定出50个FUS3基因;LEC2基因一共鉴定出16个,它们都存在于双子叶植物中。这些结果表明,除了蕨类植物,ABI3基因几乎存在于所有植物中,FUS3基因仅存在于被子植物中,LEC2基因仅存在于双子叶植物中,三者存在明显的进化分布差异。2.植物ABI3、FUS3和LEC2的系统进化分析表明,ABI3基因可以分为3类,包括绿藻植物的ABI3-like,低等植物的ABI3和高等植物的ABI3;FUS3基因可以分为2类,包括单子叶植物的FUS3和双子叶植物的FUS3;双子叶植物中的LEC2自身单独作为一类。通过比较植物ABI3、FUS3和LEC2基因的系统进化树和ABI3、FUS3和LEC2基因中B3结构域的系统进化树,推测最早在绿藻植物中产生ABI3基因,在陆生植物中首先分化出FUS3基因,最后在双子叶植物中分化出LEC2基因。3.植物中ABI3基因复制的原因有串联重复(Tandem duplication)和片段重复(Segmental duplication)。植物中FUS3和LEC2基因复制的原因主要是片段重复(Segmental duplication)。4.植物ABI3基因和LEC2基因的内含子相位主要为0、0、2、1、0,FUS3基因的内含子相位也主要是0、0、2、1、0,还包括0、0、0、2、1、0和0、0、2、1等非常相近的内含子相位。植物ABI3蛋白的模体(motif)从绿藻植物到高等植物的进化过程中不断增加,双子叶植物中FUS3蛋白的模体(motif)数量比单子叶植物多。双子叶植物十字花科中LEC2蛋白的模体(motif)比其他双子叶植物LEC2蛋白的模体(motif)更多。5.植物ABI3基因在进化的过程中,ABI3蛋白质分子质量增加,同时酸性蛋白质的数量逐渐增加。植物FUS3基因在进化的过程中,FUS3蛋白质的理化性质逐渐稳定,在双子叶植物中都是酸性的FUS3蛋白。双子叶植物中大多数的LEC2蛋白质也都是酸性蛋白质。6.为了更好地适应环境,植物ABI3和FUS3基因在进化的过程中,基因上游的顺式作用元件不断增加,并且在某些植物中出现特异性的顺式作用元件。植物LEC2基因上游存在大量与环境因素密切相关的顺式作用元件。7.根据基因上游顺式作用元件的分析结果,在莱茵衣藻(Chlamydomonas reinhardtii)中光照和厌氧条件可以促进莱茵衣藻(C.reinhardtii)中ABI3-like基因的表达。并且在缺氮条件下油脂积累,ABI3-like基因的表达量会升高。8.油料作物大豆(Glycine max)和白菜型油菜(Brassica rapa)的ABI3基因主要在种子和果实中表达,在其他的组织中几乎不表达,这说明ABI3基因与植物油脂代谢密切相关。此外,大豆和白菜型油菜的FUS3基因和LEC2基因也主要在种子和果实中表达,它们也与植物的油脂代谢密切相关。研究还首次发现,苋菜(Amaranthus hypochondriacus)中的ABI3基因尽管在种子中表达,但是在苋菜绿色子叶中ABI3基因的表达明显高于种子中ABI3基因的表达。猴面花FUS3基因在绿色子叶中的表达量也明显高于种子中FUS3基因的表达量。这说明ABI3基因和FUS3基因不仅在植物的种子和果实中发挥功能,也可能在其它组织中扮演重要的未知功能。