论文部分内容阅读
近年来,随着我国国民经济的快速发展以及超高层、大跨度钢结构建设项目的不断增加,机械和建筑用厚钢板的市场需求量越来越大,对钢板厚度规格要求不断增加,性能要求不断提高。本文结合某宽厚钢板联合研发中心建设项目中HSLA优质特厚板开发课题,以Q345和Q420级别钢为研究对象,通过基础理论研究、实验室模拟实验、变形过程力学分析和现场工业试制,对60-120mm Q345E和110mm Q420E特厚板生产工艺进行了研究。重点分析了轧制和热处理工艺对Q345和Q420厚板组织和性能的影响规律,实现实验室轧制工艺向现场应用的技术转移,对Q345特厚板现场试制过程中探伤合格率较低的原因进行分析,最终实现Q345级特厚板的工业化生产,成功试制出110mm Q420E高强度低合金钢产品。论文主要工作及研究成果如下:(1)以Q420钢厚板为研究对象,在Gleeble-2000热模拟机上进行了不同参数的实验,研究了变形温度、变形量和应变速率对Q420钢的动态再结晶行为和奥氏体热变形后等温保持时间里的静态再结晶行为的影响,建立了实验钢的变形抗力模型和静态再结晶动力学模型。采用一维隐式差分法和ANSYS有限元软件模拟特厚板粗轧过程中厚度方向温度场和应变场分布,结合高温再结晶行为实验结果来分析特厚板厚度方向不同位置的再结晶发生条件。(2)通过对Q420特厚板连续冷却相变研究得出,随着冷却速度提高,铁素体相变开始转变温度降低,相变后铁素体晶粒细化;贝氏体开始转变温度先升高后降低,贝氏体转变量逐渐增加。随着变形量的增加,CCT曲线整体向左上方移动,变形促进了碳原子扩散进而加速了铁素体相变,使相变温度升高,相变进程加快。随着变形温度的降低,铁素体相变温度升高,扩大了铁素体区,贝氏体相变温度降低。实验钢在奥氏体未再结晶区变形,其冷速所达到范围内CCT曲线存在较宽的铁素体析出区域,变形组织为先共析铁素体+珠光体,因此,对于此钢种的开发,可以充分利用其连续冷却转变曲线的特点,综合利用细晶强化、相变强化方式来提高钢板的性能。(3)研究了开轧温度、冷却速度等参数对Q345和Q420特厚板组织和性能影响规律和不同轧制方式对Q420特厚板组织和性能的影响。结果表明,采用TMCP工艺生产Q420特厚板时,在总压下率一定的情况下,加大未再结晶区总压下率,钢板的屈服强度提高,抗拉强度略有升高,断后伸长率略有降低,同时,钢板的冲击韧性得到改善,低温冲击韧性改善尤为显著。与UPR工艺轧制厚板相比,TMCP工艺钢板心部的强度和韧性明显提高,断后伸长率变化不大,这是由于奥氏体再结晶区和奥氏体未再结晶区晶粒细化机理不同所致。(4)与热轧态钢板相比,不同轧制工艺Q420钢板经正火热处理后,钢板的屈服强度降低,抗拉强度和断后伸长率变化不大,低温冲击韧性显著提高。相同轧制工艺条件下,钢板在实验温度范围内随着正火温度的降低,强度变化不大,但是韧性得到明显改善。这是由于正火温度降低,第二相粒子溶解析出数量较少,尺寸较小,奥氏体的晶粒长大较慢,两方面都对提高钢板韧性有利。钢板热处理前的轧制方式对热处理后钢板的性能影响不大,这是因为在实验正火温度范围内,奥氏体化后奥氏体晶粒尺寸差异较小所致。(5)将实验室研究成果应用于现场,摸索出适合现有宽厚板生产线规格60~120mmQ345E特厚板生产工艺,采用C-Mn钢成分,两阶段控制的TMCP工艺,实现了稳定工业生产。经生产数据统计得出,此工艺生产厚板25万t,性能合格率达92%,探伤合格率达99.21%。确定了Q420钢的化学成分、热轧和热处理工艺参数,摸索出适合现场生产的Q420厚板最佳生产工艺,并在现场成功试制出110mm Q420E高强度低合金钢产品。(6)在现场原有Q345级别特厚板TMCP成熟生产工艺的基础上,通过挖掘轧机设备潜力,提出微合金元素减量化、生产工序减量化的低速大压下特厚板生产工艺—UPR轧制工艺。对此工艺金属变形特点进行分析,采用连续速度场和上界功率法,运用积分中值定理和矢量内积的方法求解和分析轧制过程力能参数,对此工艺的可行性进行分析。通过现场试验证实该工艺生产的特厚板强韧性能匹配良好,在增加变形渗透性和均匀性、改善钢板内部质量的同时,使特厚板生产工艺轧制道次大大减少,缩短了轧制周期,提高生产效率。