论文部分内容阅读
现实生活中大量自然和人工的系统都可以用复杂网络来表征。自从发现大多数实际网络的拓扑结构都具有小世界效应和无标度特性之后,复杂网络已经吸引了越来越多物理学家的兴趣。研究复杂网络的一个主要目的是了解拓扑结构对发生在网络中的动力学过程的影响。
信息或物质的传输是网络的一个基本功能,研究其动力学过程对于现代社会具有重要意义。我们构建了一个简单的模型研究大量粒子在具有有限节点容量的复杂网络中同时沿最短路径行走时的拥塞动力学过程。结果表明,当网络中的粒子密度达到某个临界值时,系统将经历从自由流状态到全局拥塞状态的跳变,从而导致网络的全局交通瘫痪。引发网络拥塞的临界粒子密度与网络的拓扑结构有很大的关系。不同拓扑结构的网络其拥塞过程的动力学图像也不同,无标度网络中的拥塞是许多拥堵小团簇的逾渗过程,而其它几种均匀网络中拥塞集团的形成则是类似于晶体结晶的成核生长过程。
生物个体间的合作行为如何通过自然选择进化出来是自达尔文以来进化生物学研究的一个基本问题。进化博弈论为理解合作行为的演化提供了一个统一的框架。本文研究了基于遗传算法的重复囚徒困境博弈和鹰鸽博弈策略在复杂网络中的演化。我们假设个体位于复杂网络中,只和自己的邻居进行博弈。这些个体具有历史记忆能力,能够根据自身的基因型及以前的博弈历史采取不同的博弈策略。研究结果表明,这样的个体在复杂网络中经过基因的复制、重组、变异和选择之后,能够自然地进化出一种自组织的合作机制,这种合作机制既能促进合作行为的涌现,加强和维护持续的合作行为,又能对自私的背叛个体进行惩罚和报复。因此有记忆能力的群体能够在复杂网络中进化出很高的合作率。