基于复合相变材料电池热管理散热方案的设计及其性能研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:candry
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着全球对新能源汽车的研发和对环境保护的重视,近年来电动汽车得到前所未有的发展,而动力电池组作为纯电动汽车唯一的能源供给方,其安全性能直接影响电动汽车在使用中的安全和性能表现。当前电动汽车动力电池组主要为锂离子电池组,而锂电池性能受温度影响极大,当锂电池温度过高时,锂电池的电解液传送速度和电极的反应速率将加快,从而破坏锂电池内部正常的化学反应平衡,产生一些不利的副反应。尤其当锂电池的温度超过45℃时,锂电池内部材料的性能退化将加剧,大大影响锂电池的性能及使用寿命,严重时会导致锂电池组的热失控,从而引发锂电池的自燃等安全事故。针对较高温度下会影响电动汽车动力电池组性能,以及引发安全事故的问题,本文结合国家自然科学基金项目,开展基于复合相变材料的电池热管理方案的设计及其性能研究,合理地控制电动汽车动力电池组在使用过程中的温度,其主要研究内容如下:1、从锂电池的工作原理及内部结构组成等剖析锂电池在工作过程中的生热机理,并且详细介绍了热量的组成及计算方法。2、利用熔融共混法制备PW/EG/LDPE复合相变材料,研究了EG和LDPE的材料比例与复合相变材料的导热率和泄漏率的关系,并且对制备好的复合相变材料进行性能表征,探索其物理性质,研制出了高导热、低泄漏的复合相变材料。3、将制备得到的复合相变材料与散热片相结合,发现散热片的加入大大提高了复合相变材料的导热系数,并且有效减小了复合相变材料的泄漏率。将该冷却方式应用于电池热管理中,进行充放电实验,通过对比分析其对于锂电池的实际控温效果。4、研究制备了一种双层复合相变材料,并且进行了大量的实验及对比分析,探究出合适的PA、MA、LA的材料配比,制备出了三元低融共晶相变基体。对上述相变基体、EG和LDPE使用熔融共混法制备得到内层复合相变材料,将PW/EG/LDPE复合相变材料作为外层复合相变材料,以此制备出两层不同相变温度的复合相变材料,并将其应用于电池热管理中,进行充放电实验验证其散热效果。5、本文制备了一种导热硅胶,并将其涂覆于锂电池与复合相变材料的接触面,从而排挤出它们两者之间的空气,增强其界面传热效率,便于将锂电池产生的热量更快地传导给复合相变材料。通过进行充放电实验对比,发现其可以有效延长复合相变材料的作用时间。6、对上述几种散热方案进行软件仿真分析,验证其散热效果,仿真结果显示复合相变材料与散热片联合控温散热方案和双层复合相变材料控温方案在1C、2C、3C的放电倍率下都能够将锂电池的工作温度控制在安全、合理的温度范围内,表明这两种散热方案对于锂电池散热都具有良好的控温效果,与实验结果基本一致。
其他文献
在过去的十年里,有机太阳能电池的光电转化效率被持续刷新,但是一些高光电转化率材料的稳定性及高昂的成本阻碍了有机太阳能电池实现商业化的进程。苝酰亚胺(Perylenediimides,PDI)类化合物是研究最早的一类有机半导体材料之一,具有光热稳定性好、可见光吸收强等优点,但是这类材料也一直受聚集效应以及吸收范围窄的困扰。本研究从苝酰亚胺的空间构型的调控以及吸收光谱的调节出发,设计合成了一系列的扭曲
在风电占比较高的能源系统中,由于风电的波动性,风电功率预测和电力储能手段显得更加重要。电转气技术是一种有前景的解决电力长期存储问题的手段。随着电转气技术的发展,电力系统和天然气系统可以耦合成为电-气综合能源系统协同运行,提高风电利用率。本文首先介绍了风电功率的影响因素、预测方法和风电功率预测的评价指标。然后,引入萤火虫行为和莱维飞行对教与学优化算法进行改进并通过标准函数测试证明了改进方法的优越性。
巢脾(Honeycomb)是蜂巢的组成部分,是蜜蜂栖息、繁殖和酿造储存食物的场所。蜂胶在维持巢脾环境清洁和蜜蜂健康方面发挥重要作用,中蜂(Apis cerana)不生产蜂胶,其抑制微生物的繁殖,保持环境清洁,维持卵和幼虫的健康成长的机制还未见文献报道。我们推测,与意蜂巢脾(A.mellifera hongycomb,AMC)相比中蜂巢脾(A ceranae honeycomb,ACC)中的特有或含
锦纶织物在传统染色工艺中存在湿处理牢度差、染色工艺流程长、能耗大等问题;文中采用节水酸性固色剂TF-506HA对锦纶织物进行短流程染色、固色处理,探讨了固色剂用量、固色温度及固色时间对织物固色效果的影响,及节水酸性固色剂TF-506HA对不同染料的适用性,并与传统固色工艺进行对比。结果表明,节水酸性固色剂TF-506HA短流程工艺中最佳固色条件为:节水酸性固色剂TF-506HA用量6.0%,温度8
活性层是有机太阳能电池的一个重要组成部分,而活性层主要是由受体和给体混合而成。目前效率较好的搭配是宽带隙聚合物给体和窄带隙受体小分子,最高效率已经突破18%,其主要原因(a)宽带隙聚合物给体能获得较低的最高占有轨道能级(HOMO),有效地获得较高的开路电压(Voc);(b)给体和受体的吸收产生较好的互补,从而吸收更多的光子,获得高的短路电流密度(Jsc)。本文主要研究内容为基于二维氯代烷氧基苯共轭
随着环境问题日益突出,找到合适的清洁能源是首要任务,锂电池与氢能源是当今社会使用最广泛的两种清洁能源,如何提高锂电池的性能与实现高效催化制氢是当前研究的热点。本文以二维二硫化铼的大面积生长和应用为切入点,使用化学气相沉积法(CVD),利用金属薄膜的催化作用,首次在不同衬底下实现了大面积二维二硫化铼晶体的垂直生长,并将Pt/ReS2应用于电催化析氢,而且使用CVD的方法在碳纳米管表面生长二硫化铼,将
随着化石燃料的枯竭,人们对日益严重的环境问题愈加关注。在众多新型能能源存储与转化系统中,锌-空气电池(ZABs)具有能量密度高和绿色环保等优点,受到了广泛关注。其工作核心基于氧还原反应(ORR),这一反应具有动力学迟缓问题。为了提高电池的性能,需要加入催化剂来提高ORR反应速率。尽管铂基电催化剂具有出色的ORR催化活性,但由于其成本过高,而稳定性较差,极大的增加了电池的成本,阻碍了ZABs的商业化
火电机组仍然是我国的主力发电机组,其中冷端系统的运行状况对火电机组的安全经济性有着十分重要的影响,直接关系火电企业的效益。因此对火电机组冷端系统进行运行优化的研究,保证冷端系统在最优的状态下运行,对提高火电机组的经济性能及节能减排具有重要意义。以某600MW火电机组为研究对象,围绕冷端系统模型的建立和运行优化两个方面进行研究。在建模方面分别建立汽轮机微增功率模型、凝汽器变工况特性模型、循环冷却塔模
近年来,有机-无机杂化钙钛矿材料因其优异的光电性能得到了广泛的研究,由此制备的钙钛矿太阳电池的能量转换效率从2009年的3.8%提高到目前的25.5%。然而,传统的钙钛矿材料含有约35 wt%的铅,这将在未来的大规模应用中引起环境污染问题。锡基钙钛矿由于其较低的激子结合能以及较高的光吸收系数和载流子迁移率等优异的特性被视为是最有望的替代材料。此外,锡基钙钛矿还具有较窄的光学带隙(1.2-1.4 e
近年来,有机太阳电池取得了很大的进展,单节二元有机太阳电池的最高效率已经达到18%。因其具有质量轻、成本低、可溶液加工的优点,具有很好的应用前景。然而,要实现商业化应用,进一步提高电池的效率与稳定性是关键。通过合成新的给受体分子、优化器件结构以及调控活性层薄膜形貌等,都能有效提高电池性能。其中,溶剂添加剂是最常用的提高电池效率的手段,不过关于溶剂添加剂优化活性层薄膜形貌以及电池性能的内在机理,仍缺