论文部分内容阅读
强化传热技术多应用于电力、化工、冶炼等产业,其中强化对流换热的研究领域较为广泛。主要是对换热器的效率性能的改进,这有利于能源的充分利用,而且对生态环境保护也起着重要的作用。近几十年,研究学者在这个换热器这领域做了深入的研究,如各类强化异型管开发与应用,对提升传热效率有很显著的效果。但是随着人类社会发展,对能源的高效利用的迫切需求,各式各样的强化方式应运而生。电场(EHD)强化作为一种有源强化方式,有着强化效果明显,设备简单,耗能小等优点,是目前被重点研究的新方法和新手段之一。由于其强化机理较为复杂,还需更进一步的研究。本文创新性地将电场(EHD)有源强化和不同的异型管无源强化相结合,应用FLUENT提供的用户接口 UDF,用C语言编写电场方程,将模型导入FLUENT中对雷诺数(Re=600~1800)和雷诺数(Re=12000~36000)两种流动状态下进行数值模拟。得出不同电场电压、流量等参数下换热管内速度分布、温度梯度分布、压力梯度分布。并且应用场协同理论对电场、流场及热场三者协同性进行分析。得出电场对圆管、横纹管和波纹管管内对流换热流场中热流、质量流和流体流动驱动力之间的协同关系及其所反映的强化传热机理。得到以下结论:在三种换热管中布置电极施加电场,电场产生的电场力作用于管内流体从而增强扰动,形成小的漩涡,将热壁中的热量传递至主流中来促进传热,并且使换热管流场中矢量速度和温度梯度协同角β减小二者协同性增强,管内对流换热效率明显提高。与此同时使管内压降增大,矢量速度和压力梯度协同角θ增大二者协同性变差,管内流阻增加。由模拟换热管两种流动状态下对流换热,所得的努塞尔数Nu和流动阻力系数f,计算电场强化系数没和综合评价系数/>EC,发现电场对三种管型在电压OkV~40kV下均使换热效果增强,在较低的雷诺数对流换热有更好的强化效果,而更的高雷诺数流体中惯性力大,电场力推动流体的阻力增大,强化效果不明显。仅从换热角度来说,波纹管的电场强化系数Sf最大可以达到6.36,横纹管可以达到5.73。综合评价三种换热管的换热效果,横纹管换热效果最好,在一定条件下PEC在1.1~5.75之间;其次是圆管PEC在0.99~4.76之间;波纹管换热效果增强的同时流阻增幅也很大,PEC在0.67~4.19之间。