单晶金刚石同质连接机制、结构及性能研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:panok123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着近年来我国航空宇航领域的快速发展,航天器系统中如宇航探测、高频通信等技术进一步对电子、光学器件提出了功能综合性、集成性和小型化的要求,也因此带来了由电路及芯片结构复杂、单位功率增加等造成散热不足的严重问题,导致器件寿命大幅缩减甚至过热破坏,因此亟需更为优良的材料和器件结构设计等解决方案。集热、力、光、电等优异属性于一身的金刚石材料及其器件,可满足航空宇航领域先进装备对功率器件高通量热管理技术的迫切需要,成为关键和必要的材料及器件解决方案。其中,大尺寸、高晶体品质,以及具有特殊结构的单晶金刚石材料和器件的制备是核心问题。而当前最典型和成熟的单晶金刚石技术,包括高温高压法(HPHT)和化学气相沉积法(CVD),依旧由于制备和加工技术的不完善,造成材料尺寸小、晶体质量不高、结构单一等“卡脖子”问题,极大制约了金刚石材料原本的优异性能的发挥。本文为解决航空宇航领域所需的单晶金刚石在大尺寸、高品质、多结构等方面难以协调的问题,通过对CVD金刚石制备技术的研究,整合性提出了金刚石“同质连接”的新概念,即基于金刚石同质外延和相互连接的有效协同调控,形成大面积、多尺度、多结构单晶金刚石的技术。这一概念并不仅仅适用于经典的马赛克拼接,而是广泛地囊括了单晶金刚石异质外延、多晶金刚石生长等各个细分方向,成为贯穿CVD金刚石生长制备领域的普适概念。通过对“同质连接”概念相关技术细节的深入探索分析,本文将研究内容分为四大部分:(1)同质外延动力学机制、过程及强辅助工艺;(2)连接过程及机制;(3)同质连接金刚石材料性能;(4)三维多尺度结构技术与设计。首先,探索了同质外延初期形核,确认了岛状模式向台阶生长模式的演变过程及台阶迁移和沉积生长速度的关系;探究了中断-继续生长界面的缺陷及掺杂状态与分布,发现了该过程对表面生长模式产生的扰乱和复原现象;此外,调控并获得了高品质金刚石高速率生长所需的高功率密度等离子体环境,获得了多晶态36μm/h的高沉积速率,为金刚石的制备提供原理和技术支持。而后,对金刚石“连接”的概念进行广义化详述,并对其中晶核连接形成界面的微观动力学机制和过程进行了分析,揭示了金刚石晶核尺寸、晶向等偏差对连接界面的影响;对同质连接技术中“横向生长”这一关键过程进行了研究,探明了金刚石在较大等离子体密度梯度及约150℃温度梯度的双重影响下,侧表面由上至下呈现出单晶相形貌改变、杂质浓度逐渐增大,并在下部逐渐向多晶-纳米晶/非晶的晶态转变情况。之后,以mosaic拼接单晶金刚石为典型技术作为高品质同质连接金刚石的代表,对样品制备工艺进行了优化,获得了质量优良的连接界面并表征了样品晶体属性及热学性能:发现了界面处仅20μm范围内呈现应力和缺陷富集区,位错密度上升至107/cm2量级,但样件的整体导热性能依然很好,具备2470W/mK以上的极高热导率,相比无连接界面处(2530W/mK)仅有极小程度的降低。在优化工艺下实现了英寸级大面积的单晶金刚石同质连接样品的制备。最后,采用同质连接技术对金刚石宏观及微纳尺度的三维结构进行了设计制备,验证了宏观三维结构的内应力和缺陷分布,制备了极窄几乎无应力区的优质界面;微纳尺度三维周期有序结构由于其结构特殊性,实现了光学反射增益和法布里波罗干涉,突破了该结构传统上仅能制备多晶/纳米晶态的限制,实现了单晶态的金刚石光子晶体结构,在提升光学性能的同时具备了单晶金刚石其他典型的优异属性。上述结构的实现可满足航空航天领域电子器件热管理及光学元件等应用中对具有异形三维结构、多尺度空间结构的材料解决方案的迫切需求。
其他文献
形状记忆聚合物及其复合材料是通过外部激励而产生主动变形的一种新型智能材料,具有形状记忆、主动可控大变形、变刚度等特性,可被设计制作为集驱动与承载于一体的部件,这类部件结构简单、可靠,在空间可展开结构方面具有极大的应用前景,有望部分替代复杂机械机构。本文针对环氧形状记忆聚合物及其纤维增强复合材料的力学行为进行了一系列研究工作,表征了材料的热力学性能,建立了形状记忆聚合物的本构模型、纤维增强形状记忆聚
聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)弹性体是一种重要的有机硅材料,由于其独特的物理化学性质而被广泛应用于柔性传感器、电子皮肤、生物医学等领域。但是由于传统的PDMS弹性体的力学性能相对较弱,它们在使用过程中很容易受到损坏,另外由于体系中不可逆的交联结构,目前大多数聚硅氧烷材料在受损后往往无法恢复其原始功能,因此开发具有自修复性能和可循环加工性能的有机硅材料对于延长其
大型钢制储罐结构是油气存储的主要结构类型之一,该类型结构的安全性对我国的能源安全有着重要影响。由于油气产品的易燃、易挥发性质,油气泄漏导致的可燃气云爆炸事件时有发生。在可燃蒸气云爆炸或飞溅物冲击作用下,薄壁钢制储罐极易产生较大的塑性变形或穿透破坏,进而导致内部可燃物质泄漏,产生二次爆炸乃至连环爆炸,造成更大的经济和人员损失。然而,国内外相关标准以及已有研究尚未提出对钢制储罐结构进行抗爆抗冲击防护的
高超声速飞行器鼻锥和翼前缘等热端部件在飞行过程面临超过1800℃、大温度梯度和强氧化环境,为保持飞行器的维型和机动性能及精确打击性能,对热端部件用热防护材料提出了长时间超高温非烧蚀的需求。传统的难熔金属、石墨、C/C和C/SiC复合材料等高温材料已不能满足热防护的要求,超高温陶瓷材料因其高熔点、优异的力学性能和出色的抗氧化烧蚀性能而备受关注。然而,超高温陶瓷材料较低的断裂韧性和较差的抗热冲击性能制
能源与环境问题是当今世界各国关心的重大发展战略问题,由经济发展带来的能源消耗、能量需求和污染物排放越来越不容忽视。中国每年发电用煤近20亿吨,多采用石灰石-石膏湿法脱硫。每年至少开采优质石灰石1.25亿吨,破坏生态环境;副产劣质石膏2.15亿吨,量大质低,难于利用;耗水量大,脱硫废水难零排放,现行脱硫工艺将引发严重生态问题。中国是天然硫资源贫乏国家,2019年进口硫磺超过1100万吨,对外依存度高
非接触磁致伸缩导波是利用材料自身的磁致伸缩效应在构件中直接激励和接收导波,其适用于被检对象为铁磁性材料的检测。相比较传统的点对点式无损检测方法,非接触磁致伸缩导波检测距离长、非接触、效率高,传感器不需沿着被测结构移动进行检测,能够检测结构内外部的缺陷,因此研究非接触磁致伸缩导波在无损检测和结构状态监测中的应用具有重要意义。磁致伸缩导波的激励效率低是限制其广泛应用的主要因素,这使得导波信号幅值小、传
无线传感器网络是帮助人们认知、探索物理世界的重要工具,也帮助人们打破了信息世界与物理世界之间的壁垒。然而,由于传感器节点的供电单元一般为电池,使得传感器网络的网络寿命受限。同时,废弃的传感器节点中的电池也会对环境造成不可逆的污染。这两点严重阻碍了传感器网络的进一步发展。为了解决这个问题,研究者提出了无源传感器网络。无源传感器网络是由无源传感器组成的网络。无源传感器节点自身不携带电源,但可以从周围环
背景与目的:脑胶质瘤是常见的中枢神经系统原发性恶性脑肿瘤之一,胶质母细胞瘤恶性程度高、侵袭性强、容易复发,复发后患者的预后极差。筛选胶质母细胞瘤复发相关的基因,并分析其在胶质瘤中的表达、临床病理学参数和预后的关系。方法:通过对GEO数据库中胶质母细胞瘤相关数据集进行挖掘,筛选包含胶质母细胞瘤原发和复发病例的相关数据集,并分析胶质母细胞瘤原发病例和复发病例样本间的差异表达基因(differentia
近年来,受其他学科和众多工程技术领域应用需要的驱动,非线性反问题引起了国内外学者的极大兴趣和高度重视。其中涉及对扩散光学层析成像、光声成像、半导体的掺杂问题、多边界测量参数识别等问题的反演理论、算法及应用研究尤为引人关注。从数学视角出发,这些问题均可抽象为包含多个非线性不适定算子方程的数学模型。然而,解决这类问题不仅面临非线性性和不适定性的双重困扰,还因问题本身规模巨大而对算法的计算效率、计算机的
复杂网络的同步性因其在图像处理、多智能体系统、安全通信等领域的广泛应用,已经成为了当今重大研究课题之一。在实际中,时滞现象不可避免地存在,在时滞复杂网络的同步研究中,如何定量刻画网络的同步能力,网络的拓扑结构是如何影响同步性行为等问题在理论和实际上都具有十分重要的意义。在没有外力的作用下,网络通过自身的拓扑结构很难达到同步,因此,利用控制方法实现网络系统的同步是十分必要的。间歇控制在节省能量和信息