论文部分内容阅读
铁电材料由于具有良好的光电、光折变、非线性光学和机电转换等特性,已在电光调制器、谐波发生器、高速开关、全息存储设备、热探测器和滤波器中被广泛应用,是物理、化学和材料等多领域的热门研究对象。众所周知,材料在高压力的作用下,原子间距被极大压缩,因此结构会发生变化,继而出现很多常压条件下不存在的奇特物理和化学现象。本论文就是针对铁电材料钽酸锂(LiTaO3)在高压下的结构和电输运性能开展系统的研究,目的是拓展人们对铁电材料在极端条件下的认识。我们利用金刚石对顶砧技术平台,对LiTaO3进行了高压原位结构和电输运性质的研究,得到如下研究结果:1.利用高压同步辐射X光衍射技术,研究了LiTaO3晶体结构在高压下的变化。当压力增大到38.1GPa时,LiTaO3发生了由空间群R3c到Pnma的结构相变。高压拉曼光谱研究发现,在30GPa之后,LiTaO3样品的拉曼峰虽在减弱,但样品并未发生非晶化,与之前33.2GPa时样品发生非晶化相变的结论明显不同。这可能与我们的样品为多晶形貌和实验中具有较好的静水压环境有关。2.通过高压原位交流阻抗谱,我们发现当压力低于35.1GPa时,Nyquist阻抗谱中的低频区一直存在电感弧。当压力增加到37.2GPa后,电感弧消失。电感弧消失的压力点与相变的压力点接近,证明了电感弧的消失与结构相变相关。通过等效电路拟合,我们认为电感弧的存在与LiTaO3中的电致伸缩效应密切相关,得到了电感随压力的变化关系。此外,我们还对LiTaO3进行了高压原位紫外-可见光吸收光谱测量,发现其带隙随压力的增大而增大,是LiTaO3电阻值随压力增大而增大的原因。