基于生物有效性推导我国铜的水生生物基准

来源 :第八届全国环境化学大会 | 被引量 : 0次 | 上传用户:michael_zhang_x
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
生物配体模型(BLM)广泛应用于评估水质参数对重金属的毒性和生物有效性的预测研究.该模型将生物受体位点作为生物配体,考虑了影响生物毒性的水化学性质,并引入了生物有效性的概念,在较宽的水质参数范围内取得了较好的预测效果.目前,已经建立了Cu、Cd、Zn和Pb等金属的BLM模型.比较成熟的Cu-BLM模型已经被美国EPA和欧盟化学品管理局(ECB)用于淡水系统中来推导铜的水生生物基准.
其他文献
目前,聚合物电解质燃料电池(PEFC)的阴极使用碳载贵金属Pt或Pt基合金作为催化剂,其高昂的成本和有限的产量限制了燃料电池的商业化应用,同时在阴极的氧化环境下,Pt及其载体的稳定性差是导致电池寿命降低的主要因素之一.因此,设计具有高活性和高稳定性的非贵金属催化剂是近来燃料电池研究的重点[1].
钯催化剂由于其对羰基高的选择性而在苯乙酮加氢制苯乙醇反应中被广泛应用,然而,其催化苯乙醇氢解得到乙苯的活性也较高,特别是对于酸性载体而言,要高选择性得到苯乙醇显得尤为困难.本文通过对聚苯乙烯球硝基化-还原胺化的方法制备一种聚氨基苯乙烯@氧化硅纳米材料.并以其为载体制备了钯催化剂,聚氨基苯乙烯中丰富的氨基既可以有效稳定钯纳米粒子,其表面一定的碱性又可以抑制苯乙醇的进一步氢解反应的发生.
戊二醛(GA)是一种广泛应用于消毒、皮革、油田及造纸等领域的重要精细化学品,其商业生产方法由于工艺和原料等问题极大地限制了它的大规模应用.目前,最具有开发和应用前景的合成路线是以环戊烯(CPE)为原料、双氧水为氧化剂的一步法合成法[1].
氢能具有清洁、高效、安全、无污染等特点,被认为是未来最有发展的前景能源之一.氨硼烷由于具有非常高的储氢量分数(19.6wt%),颇具应用前景[1,2].氨硼烷可以通过热解和溶剂解(水解、醇解)的方式放出氢气.热解往往要求通过高温实现,而在室温下选择合适的催化剂可以使每摩尔氨硼烷放出3摩尔的氢气[3-5].因此,制备出高效的金属纳米催化剂催化氨硼烷水解制氢是目前的研究热点.我们采用简单的原位还原法成
将有机胺改性的分子筛作为CO2捕集的吸收剂备受人们关注.目前,此类材料的开发多集中于直接改变有机胺或分子筛种类[1-3],以获得更多碱位而提高CO2吸附量.本文探讨了不移除模板剂(P123)时以Zr掺杂SBA-15 制备Zr-SBA(P) 以提高表面酸性,并利用三乙烯四胺(TETA) 对其进行改性制备Zr-SBA(P)-n (其中:n表示TETA的百分含量),提高CO2吸附性能的可行性.该方法为C
Al2O3具有多孔性、比表面积大、表面酸性和高热稳定性等特点,所以在很多化学反应领域和废水处理中被用作催化剂载体或吸附剂等[1].通过控制制备条件可制得各种具有不同比表面积和孔容的Al2O3产物,包括纳米管、纳米线、纳米片和其它纳米结构[2].
会议
金属有机骨架材料(MOFs)因具有大比表面积、高孔容以及不饱和金属位等特点而使其对CO2 的吸附性能优于传统吸附剂[1].然而,大多数MOFs 水敏性差、机械强度低以及约80%的孔隙未被有效利用等缺点而限制了其在气体分离领域的规模化应用.
The demands for clean energy and the emerging ecological concerns have greatly stimulated the research on the development of new,low-cost,and environmentally friendly energy conversion and storage sys
会议
1.IntroductionParticulate matters(PM) and volatile organic compounds(VOCs) are discharged from process of fossil fuel combustion,especially in diesel engine system.Zirconia based materials are one of
会议
NbCeWTi and CeWTi catalysts were prepared by a sol-gel method,whichshow higher activity and wider operation temperature windowcompared with VWTi catalyst.
会议