锂空气电池中无机多孔材料的构建策略

来源 :第十五届固态化学与无机合成学术会议 | 被引量 : 0次 | 上传用户:zmc02302
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  锂空气电池是继锂离子电池之后的一种全新的高比能电池体系,其理论能量密度是锂离子电池的10倍以上。它的研发成功将是能源史上的一次重大突破。然而,受限于空气正极反应动力学和传质动力学慢、电解质和负极稳定性差、电极钝化等问题,锂空气电池潜在优势难以发挥,能量转换效率、倍率性能、循环寿命等均亟待提升。针对这些问题,我们设计与合成了系列碳修饰正极和碳替代正极,有效提高了正极的电化学稳定性,进而提高了锂空气电池的比容量和循环寿命;制备的钙钛矿催化剂材料,有效降低了锂-空气电池充/放电过电位,进一步大幅提高了锂空气电池的能量转化效率和倍率性能;制备的分子筛基多功能隔膜,可有效吸附电池运行中的水分、二氧化碳和副反应产物中间体(甲酸根、乙酸根、碳酸根),可以同时解决金属锂负极的腐蚀难题和空气正极的钝化难题,大幅提高锂空气电池的循环寿命和安全性。
其他文献
表面金属-有机骨架薄膜是一类通过金属配体和有机分子配体配位而成且附着在基底表面的多孔薄膜材料,具有孔径可控、物理与化学性质可控修饰等特点,近年来在气体分离、电子器件、光伏器件等领域受到研究人员的广泛关注[1,2]。本研究组利用液相外延分步生长法,制备了一系列单一取向的二维金属-有机骨架薄膜。通过在薄膜中引入掺杂金属(Pd)、供电子基团(二苯胺),调控薄膜对光捕获能力及电荷载流子的迁移率,并将该类材
Metal-organic frameworks(MOFs)hold great promise as porous matrixes for the incorporation of Au NPs because of their rationally designed framework structures.Unfortunately,the as-synthesized bulk MOFs
质子交换膜燃料电池是具有广阔应用前景的下一代清洁能源动力电池。我们课题组通过利用新型二元离子液代替水作为质子传导介质,利用离子液的高沸点、热稳定、低挥发、阻燃等特点,以固态多孔配位聚合物为基质,制备复合新型固态质子导电材料。其中,以MIL-101、UiO-6x系列MOF等为基质,通过负载和直接修饰二元离子液的方法,完成了宽温域(-40℃~150℃)和高导电性的质子导电材料设计制备和性能研究。通过聚
由Keggin型钨磷酸、钨硅酸与三聚氰胺反应得到2例新型杂化物:(C3N6H6)3H3[PW12O40](1)和(C3N6H6)4H4[SiW12O40]·6H2O(2).在这两个化合物中,三聚氰胺都是质子化的.非常有趣的是,尽管是结构相同的Keggin型多酸与三聚氰胺反应,并且合成方法类似,但得到的杂化物组成有很大区别.三聚氰胺与钨磷酸反应得到的产物中不含结晶水,而与钨硅酸反应得到的产物含有6个
Metal-organic frameworks(MOFs)constructed from metal ions or metal clusters and organic ligands are a unique class of porous materials exhibiting important applications in the storage,separation and p
近年来,金属有机框架材料因含有可调控的孔道以及常具有丰富的氢键体系等,在质子导电方面的应用得到了迅速的发展.我们课题组最近致力于对取代咪唑二羧酸配体所构筑的MOFs质子导电的研究.本文采用对羧基苯基-4,5-咪唑二羧酸(p-CPhH4IDC)与Co(Ⅱ)反应制备出三维的MOF{[Co3(p-CPhH2IDC)3(4,4′-bipy)·H2O]·2H2O}(1),并对其质子导电性能进行研究.1中含有
多孔碳材料已经被广泛应用在许多领域.本项工作中,我们通过二氧化碳活化工艺,成功制备了三种不同形貌(颗粒、纳米线和纳米带)的氮掺杂多孔碳材料.通过改变聚吡咯前驱体的形态,氮掺杂碳材料的多孔性质和催化性能显著提高.在这些氮掺杂多孔碳材料中,具有纳米带形貌的氮掺杂多孔碳具有最高的比表面积(1130 m2 g–1).它在氧气饱和的KOH水溶液(0.1 M)中具有最好的ORR活性.这种增强的ORR性能可归因
由于在变形和旋转上的灵活性,四面体结构单元在传递氧离子上显示了一定的优势[1]。和间隙氧离子缺陷比较,氧空位很难在基于四面体的结构中稳定并发生迁移。孤立四面体阴离子白钨矿结构以往显示出间隙氧离子导电,但氧空位被发现难以在该结构中稳定并发生迁移。本工作中,我们利用粉末衍射,固态核磁共振谱,第一性原理计算,分子动态模拟等多个互补性的手段阐述了在孤立四面体阴离子白钨矿结构BiVO4中Sr对Bi的取代制造
向自然学习是构筑新材料和新器件的重要途径。近年来,主要从事微纳米多尺度结构的仿生构筑与浸润性调控方面的研究工作。揭示了部分生物材料表面多尺度微观结构与宏观特殊浸润性之间的本质关系,为超浸润性材料的仿生构筑提供了依据;仿生制备了系列超浸润材料;提出了仿生多功能集成材料的设计理念。仿生构筑了系列多功能化材料,并开展了材料在油水分离、集水、微液滴输运等领域的应用研究。
近几年,无机非金属材料,如纳米碳、六方氮化硼和硼碳氮等,被发现在很多重要的化学反应中展现出可观的催化活性[1]。硼是一个轻量的类金属元素,具有空的P轨道,一般能够和其他元素形成稳定的共价键,形成硼掺杂材料并赋予其高的热稳定、化学阻抗和机械强度等性质,使其在电催化,光催化,液相催化和热催化中都有重要的应用。例如,二元的硼碳,硼磷材料,由于他们可调节的带隙,在光催化反应中表现出非常高的催化活性;硼掺杂