空芯光子晶体光纤研究发展现

来源 :中国物理学会2016年秋季会议 | 被引量 : 0次 | 上传用户:meimeini
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  空芯光子晶体光纤(hollow-core photonic crystal fiber,HC-PCF)作为光纤光子学领域最重要的发明之一,自1999年被首次研制至迄今十多年的历程中,其独特的科学研究价值和实际应用潜力极大地推动了现代光科学的进步。一方面,作为一根可以弯曲的导光链路,空芯光子晶体光纤能够大大简化光路结构,消除衍射,将光约束在很小的横截面内长距离传输。另一方面,光沿着空芯光子晶体光纤的传播性质类似于自由空间,打破了介质材料吸收的限制,有望在光纤中创造出一个无色散无非线性无时间延迟的理想光学环境。
其他文献
Laser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes.The possibility to trigger real-scale lightning in the atmosphere by laser f
As one of the most important physical processes of strong-field laser-matter interaction,laser-driven electron-ion recollision is the fundamental process during high-order harmonic generation(HHG).For
会议
Terahertz(THz)radiation generated from laser plasma provides a unique THz source that has the potential of increasing power and intensity beyond the damage threshold of bulk materials.First we review
会议
The directional control of molecular dissociation with the laser electric field waveform is a paradigm and was demonstrated for a variety of molecules.In most cases,the directional control occurs via
会议
原子分子与强激光场作用过程中,谐波能量在电离势附近的低次谐波辐射最近受到较多的关注。在一些实验条件下,谐波辐射谱中能够看到光子能量恰好等于电离势的谐波辐射,但是其产生原因并不是非常明确,因此我们对这一问题展开了理论研究。通过数值求解氢原子在激光场作用下的薛定谔方程,我们发现,当脉冲长度足够长的时候,某些激光条件下确实能观察到光子能量等于电离势的谐波辐射。通过更进一步的研究,我们发现这一辐射并不是受
随着激光技术的发展,聚焦后的激光强度已经接近甚至超过了原子分子内部的库仑场。这样强的激光场和原子分子相互作用是高度非线性的,能引起原子分子的激发、电离、解离、库仑爆炸等复杂动力学过程,产物电子、离子、光子等携带的能量覆盖范围非常宽,涉及到强激光场中的电子-电子、电子-核、核-核之间的关联效应,是当前原子分子物理最活跃的研究领域之一。本报告将介绍近年来,我们在北京大学新建的瞬态荧光光谱谱仪,瞬态吸收
本文将核振动引入双原子分子体系中,数值求解二维H2+的含时薛定谔方程和高次谐波产生.非玻恩-奥本海默近似下,随核间距增大而迅速增加的电离率,导致脉冲后半段产生更多的谐波,使得谐波谱出现红移1.我们研究了核初始振动态、谐波阶次以及分子轴取向角对红移的影响.越高的初始核振动态电离率越大,核振动的影响和红移现象也越不明显.由于较高阶次谐波受振幅变化影响更大,因此红移的量随着谐波阶次的增大而呈现增加趋势.
近些年来,强场物理学界对非序列双电离的研究主要集中在低Z稀有气体原子,即He,Ne,Ar原子.在绝大多数实验观察中,双电子主要向同一个半球发射,即正关联.同时,在回碰阈值以下观察到Ar原子的双电子主要向相反半球发射,即反关联.最近,在Xe的双电离实验中,上面提到的正关联或反关联占主导的现象完全消失,取而代之的是出现一个非结构的双电子动量关联谱[Phys.Rev.Lett.113,103001(20
飞秒激光器的发明极大地促进了物理、化学、生物等学科的发展。其超快、超强的特性,使得许多教科书上的公式已经不能描述飞秒激光脉冲与物质相互作用的过程。从而发展了众多的新理论,在此基础上发展了许多的新应用。我们在飞秒激光与晶体材料相互作用的主要工作有两方面:一是飞秒激光改性材料的制备、形成机理及其应用的研究;二是铁电晶体中飞秒脉冲激发太赫兹声子极化激元的研究。对于第一方面的研究,我们发展出了三维双温德鲁
分子动力学理论模拟飞秒激光脉冲和纳米材料作用显示纳米材料存在表面熔化现象。我们利用飞秒激光在纸上进行原位还原了氧化石墨烯(GO)和氯金酸(HAuCl4),成功地制备了导电性能优异的还原氧化石墨烯(rGO)和金纳米颗粒的复合材料。实验表明在激光功率略高于阈值时,主要呈现多光子非线性吸收机制,而当激光功率进一步增加时,实验观察到光热还原、非热融化,烧结等现象。