金属有机材料的组装与功能

来源 :“可控自组装体系及其功能化”重大研究计划2015-2016年度学术交流会 | 被引量 : 0次 | 上传用户:zslovechl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
有机光电材料在多个领域有着重要的应用.通过合理的分子设计,在有机分子中引入金属离子后,可以有效调控材料的前线轨道能级、能隙和光电性质,并有机会实现单纯有机材料无法实现的新功能.本项目以智能响应金属有机共轭材料为研究内容,设计金属有机组装新基元,创造新型功能化可控自组装体系.在过去一年中,主要取得以下研究进展:设计合成了一系列胺-钌共轭金属有机材料,具有多步可逆氧化还原过程,分别在溶液状态以及电聚合薄膜状态实现了较高性能的近红外电致变色现象.通过在分子上引入多个羧酸基团,在ITO玻璃电极表面制备了相关材料的自组装单层膜,实现了分子层次的多态近红外电致变色.
其他文献
糖是三类最重要的生物大分子之一,"糖-蛋白"识别是生命体中重要和基本的自组装驱动力,但迄今它在超分子自组装研究中并未得到充分重视.在重大研究计划的前期支持下,在"糖-蛋白"作用诱导蛋白质自组装、含糖大分子组装体的免疫功能研究方面取得重要进展,已超原计划书预期.按照指南的要求,通过与免疫学者及蛋白质结构学者一道对相关研究的集成和凝练,提出本课题:"基于糖的大分子精确自组装及生物学功能",研究目标和内
以催化功能为导向,通过选择在与医药、材料、环境等相关不对称催化、生物质脱氢与转化及二氧化碳固定与氢化等重要反应中表现出极高活性的优势配体及催化剂进行修饰和改造从而制备一系列新型桥联配体.在此基础上通过与特定金属离子选择性配位组装,高效可控地制备了一系列单金属核、双金属核稳定的嵌入式及悬挂式的自负载型金属有机配位聚合物催化剂.通过固体核磁、红外光谱、电镜、XRD、元素分析等分析手段表征后,利用不对称
生物自组装是自组装的最高形式.自然界的一切生命以及相关的功能都是分子间通过多重弱相互协同作用,以非常精密、准确和程序化可控的方式自组装而实现的,并能够对多种刺激响应,实现复杂而神奇的生物功能,如细胞的传输、免疫系统的防护、分子伴侣调控蛋白质折叠等等.生物自组装是多尺度、多组分的复杂而又有序的过程,生物大分子(蛋白质、核酸等)通过组装完成从一级结构到高级空间结构的转变,这一过程中导致的特定组装结构被
自组装是创造新材料、新催化剂的强大手段.生物自组装体的优势是基于其良好的可编程多层级自组装性能,能够实现较复杂的功能.蓝藻中的羧化体自组装使得在其内部富集二氧化碳,隔绝氧气,形成了多酶偶联的高效催化体系,实现了在富氧条件下的二氧化碳固定反应,是地球碳循环的主要过程之一.其自组装为正二十面体的驱动力,隔绝氧气,富集二氧化碳,高效催化二氧化碳固定的机理有待阐明.拟将化学合成的,具有特殊红外、核磁、顺磁
表面分子自组装的方法学研究已经较为成熟,文献汗牛充栋.本项目团队在过去的研究中也通过设计不同的组装基元,利用不同的弱相互作用乃至强相互作用,并通过改变表面温度、覆盖度、衬底晶格、外场甚至催化剂等获得了若干分子组装结构和体系.然而,这些结构和体系在性能调控方面的研究是表面分子自组装领域亟待加强的地方.本项目通过表面分子自组装方法和体系,利用扫描隧道探针显微镜等技术以及相关理论模拟和计算,针对主要目标
本年度在具有高迁移率和高光电转换效率的新型光电功能组装体的设计、结构优化、器件制备等方面,取得了一些重要进展:聚合物半导体场效应晶体管因其柔性,廉价等优势,有望广泛应用于射频标签,柔性显示器,电子纸,电子皮肤,传感器等有机电路.选取两种结构相似的共轭聚合物制备了高质量的聚合物单晶纳米线组装体,两种纳米线分别呈现出"edge-on"和"face-on"两种截然不同的构型.两种构型的纳米线都得到了>5
为了更好地理解阴离子-π作用本质与规律,系统性理论计算了缺电子大环分子1:杂环[2]芳烃[2]三嗪分别与四种阴离子X-(X-=SCN-,NO3-,BF4-和PF6-)在气相下的结合特性.利用扩展的ONIOM(eXtended ONIOM,XO)方法2,在1·X-结构优化中充分考虑了周围环境分子影响,使得最终优化构型非常接近实验X射线衍射的结果.之后借助分子中原子原理(AIM),约化密度梯度(RDG
Here I show a few examples on how the interaction between surface and adsorbates affects the nature of the surface-based self-assemblings.
会议
短肽自组装微观机理的研究对新型生物纳米材料设计和蛋白质构象病相关药物的开发具有非常重要意义.但是,由于组装过程的复杂性,自组装微观机制和组装体结构的原子细节仍不清楚.本年度通过采用粗粒化和全原子结合的常规分子动力学模拟(MD)以及增强采样的副本交换分子动力学(replica-exchange molecular dynamics-REMD)模拟方法,主要研究了氨基酸序列不同的短肽(AAAAAAK(
材料的性能不仅取决于功能基团的性质,还强烈依赖于功能基团的相对位置.发展可控自组装体系,可以为构筑功能精确可调的智能材料提供平台.前期工作中,报道了具有高度热力学和动力学稳定性的基于含二齿酰肼单元的自组装环形六聚体;进一步的,应用4-烷氧基间苯二甲酰胺为链接单元,通过分子内六元环氢键的形成,精确控制两个酰肼单元在组装体中的精确位置.应用上述控制策略,把咔唑功能基团引入到环形六聚体中,精确控制咔唑功