p-type Mesoscopic NiO as an Active Interfacial Layer for Carbon Counter Electrodes Based Perovskite

来源 :第二届新型太阳能电池学术研讨会 | 被引量 : 0次 | 上传用户:wangguoqiang123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Replacement of ZrO2 insulator layer in state-of-the-art TiO2/ZrO2/carbon structure by mesoscopic p-type NiO particles led to 39% increase of energy conversion efficiency of hole-conductor-free organometallic perovskite heterojunction solar cells with carbon counter electrodes.In these cells, the light absorber, CH3NH3PbI3, formed instantly inside the pores of the entire TiO2/NiO/carbon layer upon sequential deposition of PbI2 and CH3NH3I.Photoluminescence, impedance spectroscopy and transient photovoltage decay measurements have revealed that introduction of NiO extended the electron lifetime and augmented the hole extraction to the counter electrode.As a result, the photocurrent and open-circuit voltage both increased, resulting in a cell with impressive energy conversion efficiency of 11.4% under AM1.5G condition.
其他文献
The development of organic-inorganic halide perovskite solar cells (PSCs) has been very fast,recently.PSCs display diversified device architectures and anomalous current-voltage hysteresis.These featu
Perovskite solar cells (PSCs) is of particular interest because it can offer a number of advantages when compared to existing photovoltaic technologies.Searching for low cost, suitable alternatives to
会议
铅卤钙钛矿的单晶是研究其物理化学性质的有力载体,传统的溶液浓缩单晶生长工艺往往较为繁琐,在此我们报道了一种通过加热等化学计量比PbBr2和[(1-y)CH3NH3Br+yCH3NH3 Cl]的DMF前驱体溶液来生长CH3NH3Pb(Br1-xCh)3单晶的策略,该生长方式过程易于控制,条件温和,进一步的研究表明,Cl含量的增加使得CH3NH3Pb(Br1-xCh)3的带隙增加同时晶胞减小,另外有趣
同传统太阳电池相比,钙钛矿太阳电池具有转换效率高、可溶液加工等优点,近几年来受到了科研人员的广泛关注,并取得了突破性的进展.在钙钛矿太阳电池中,各个结构层的性能直接影响着器件的最终光电转换效率.其中,致密的二氧化钛层通常被用作空穴阻挡层.我们通过研究发现:对二氧化钛致密层进行铌掺杂可显著提高电池光电性能,光电转换效率可达10.26%.而在同等条件下采用二氧化钛致密层制备的电池光电转换效率为9.22
有机铅卤CH3NH3PbX3 (X=I,Br, I3-xClx,I3-yBry)钙钛矿太阳能电池显示出了优异的光电转换性能,目前i获得20.1%的认证光电转换效率[1],应用前景广阔.钙钛矿太阳能电池厚度与光生载流子扩散长度较为接近[2-4],光生空穴传输至FTO导电基底的几率较大,易造成电池的局部漏电及短路.因此,为促进光生电子快速有效传输至FTO导电基底、防止电池短路,高性能的阻挡层至关重要.
过去几年来钙钛矿太阳能电池研究取得了突破性进展,光电转换效率从3.8%提高到20%以上[1,2],展现出巨大的应用前景.如何制备出高质量的钙钛矿活性层薄膜以及对界面性能的有效调控是制备高效率钙钛矿太阳能电池的关键因素.为了匹配卷对卷印刷制备钙钛矿太阳能电池的工艺,我们在这个报告中聚焦低温溶液法制备平面异质结钙钛矿太阳能电池.(1)通过溶剂诱导、制备工艺参数等方法调控钙钛矿活性层薄膜形貌结构和界面性
Carrier (electron and hole) transport layers are important components in organic/inorganic optoelectronics such as organic solar cells (OSCs), perovskite solar cells,dye sensitized solar cells, organi
我们成功开发了钙钛矿薄膜的低压化学气相沉积(LPCVD)制备方法.在低压条件下,通过温和的气相-固相(G-S)反应,有效解决了无机薄膜PbI2与有机基团CH3N3I之间超快插层反应速率问题,避免薄膜出现粗糙、多孔及不完全覆盖等缺陷,进而制备出薄膜质量高、衬底覆盖性佳、稳定性及重复性好的钙钛矿薄膜.分析研究表明,该薄膜具有极好的结晶性能、较高的光吸收系数及较长的载流子扩散长度;更为重要的是,LPCV
Organometal halide perovskite solar cell has attracted tremendous attention owing to its boosted development in the efficiency of converting solar energy into electricity.The interlayer plays a critic
钙钛矿薄膜质量是器件性能好坏的关键性因素之一.通常采用简单的一步溶液旋涂方法制备钙钛矿薄膜,即将前驱溶液旋涂在基底上,然后退火晶化形成薄膜.该方法简单易行,但最大的问题是制备出来的薄膜不够平整,易出现孔洞,导致电池整体性能下降.也有研究者利用气相法制备平整的钙钛矿薄膜,但制备过程复杂,同时增加生产成本,所以溶液法仍得到大多数研究者的关注.因此,理解溶液法中钙钛矿薄膜的结晶过程,进而提高薄膜质量是非