染料敏化太阳能电池光阳极缺陷态空间分布及热力学分布探究

来源 :第十四届全国太阳能光化学与光催化学术会议 | 被引量 : 0次 | 上传用户:peilimin1989
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  基于介孔TiO2光阳极组装的染料敏化太阳能电池(DSSCs),因具有光电转换效率高、制备简单等优势,而受到了研究者们的广泛关注。[1-3]在这类太阳能电池中,电子的有效传输及电荷复合损失,都与光阳极TiO2中存在的大量缺陷态(Trap State)密切相关。[4,5]本工作中,我们利用时间分辨电荷抽取(TRCE)的实验方法,研究DSSCs光阳极膜的缺陷态态密度(DOS,Density of States)热力学分布,发现在TiO2禁带中存在“深”、“浅”两类具有不同特征能量的缺陷态。通过考察具有不同颗粒尺寸的光阳极的DOS分布,我们对不同类型的缺陷态进行了空间指认,发现深缺陷主要分布在TiO2颗粒的表面,而浅缺陷则布居在颗粒的体相。基于瞬态光电压(TPV)测试,我们还研究了DSSCs中的电荷复合动力学,发现电荷复合速率与电子在光阳极颗粒中的传输动力学密切相关,且服从“Multiple-Trap”理论的描述。缺陷态的DOS分布情况会显著地影响电荷复合动力学,其中浅缺陷(即体相缺陷)所起的作用远远大于深缺陷(即表面缺陷)。最后,我们分析了光阳极缺陷态的热力学及空间分布对DSSCs光伏性能的影响,为后续的光阳极介孔膜的形貌结构设计提供了新思路。
其他文献
目前,由于大量化石燃料的燃烧以及相关的人类活动,造成每年大气中CO2等温室气体含量都在增加,进而导致全球气候变暖.因此,发展绿色、高效、低成本的碳分离储存技术(CCS)对于减轻全球变暖这一趋势十分重要.在众多的分离存储技术中,膜分离技术因其高效节能、成本低廉以及以工业化的特点,受到研究人员越来越多的关注和研究.
作为一种特殊的低温电解质,离子液体拥有较低的熔点、较高的导电能力、较宽的电化学窗口和液态范围等优良性质,这使其在电化学方面有着广阔的应用前景.近年来,国内外在基于离子液体的活泼金属电沉积和高分子材料的制备方面做出了大量的研究工作,取得了阶段性的进展.然而,现有报道大都集中于体系性能的调控、反应条件的优化和产物的表征,而对微观电化学反应规律研究不足,这不利于相关应用的深入发展.
聚-3-羟基丁酸-3-羟基己酸酯(poly(3-hydroxybutyrate-co-3-hydroxyhexanoate),PHBHHx),是聚羟基烷酸酯(Polyhydroxyalkanoates,PHAs)的一种,不仅具有良好的物理和机械性能,而且具有完全生物可降解性以及生物相容性等合成塑料所不具备的特性,物理和机械性能甚至超越前两代PHA(即PHB和PHBHV).因而作为一种替代合成塑料的
H2 和CH4 作为世界公认的可再生清洁能源,它们的制备一直是人们研究的热点.本文主要研究水热催化气化微藻制备H2 和CH4.首先,采用间歇式不锈钢高压反应釜,在430℃、1h、1g 微藻/1g 催化剂、ρH2O=0.027g/cm3 条件下,探究了催化剂种类(负载量5%贵金属催化剂:Ru/C、Pt/C、Pd/C、Rh/C 和Ir/C)对小球藻水热气化所得气体产物中H2 和CH4 含量和产率的影响
由高度功能化分子甘油选择性催化氧化制1,3-二羟基丙酮(DHA)是广受关注的绿色化学反应过程.贵金属Pt可以非碱性条件下有效催化甘油的伯位羟基氧化.大量研究表明掺氮碳纳米管(NCNTs)是一种优良的催化剂载体,可以提高Pt催化剂分散度,但是NCNTs上何种含氮官能团在锚定Pt颗粒中起到主要作用,进而影响Pt的电子态和催化性能仍存在争议.虽然Bi作为一种重要的助剂可以有效促进甘油的仲位羟基氧化,显著
伊/蒙混层粘土是一种新型非金属粘土矿物材料.目前国内外对伊/蒙混层粘土的研究主要集中在矿物的成形机制、矿物结构分析方法及其在地学领域的应用等方面,其改性应用研究较少.为了有效开发利用伊/蒙混层粘土矿产资源,拓宽其应用领域,提高其产品附加值,同时控制生产成本及能耗,本文以硬脂酸为有机改性剂,采用干法对伊/蒙混层粘土进行表面改性,制备得到了有机改性伊蒙粘土微纳米材料,并将该有机改性的微纳米材料用作重道
物质的溶解是化学与生物科学研究的基础性过程,多数具有药用价值的活性成分,分子量较大,分子结构复杂,部分活性物质结构上既有芳香环等疏水性片段、又有羟基等亲水性片段,分子间内聚能高,因而水溶性和油溶性均较差,严重限制了药物的生物利用度,也给分离纯化方法及溶剂的选择带来极大的困难,阻碍了载药体系的开发。除了分子修饰外,目前报道的増溶方法有助溶剂,混合溶剂,胶束/微乳液和低共融盐溶剂等,由于离子液体的多重
钠离子电池由于钠资源丰富,性能与锂离子电池接近而成为近年来研究的热点,然而钠离子电池发展的重点在于其正极材料。铁基氟化物作为一种新型的正极材料,因其较高的工作电位,较高的理论比容量和较低廉的价格受到学术界的广泛关注。同时不同化学计量比的铁基氟化物具有不同的晶体结构和物理化学性质也使得铁基氟化物成为近年来的热点方向[1]。但是,铁基氟化物固有的低离子电导率和电子电导率在很大程度上限制了其在锂离子电池
染料敏化太阳能电池(dye-sensitized solar cells,DSCs)由于具有制作工艺简单、光电转换效率高、成本低、稳定性好等优点受到学术界和企业界的广泛关注.DSCs主要由染料敏化的TiO2光阳极、含有氧化还原对(主要是I-/I3-)的电解质和催化对电极组成.对电极的主要作用是接受外电路来的电子,同时催化电解质中I3-还原为I-.由于目前使用较广的Pt对电极价格昂贵,不利于DSCs
苝二酰亚胺,作为一种非常廉价易得的有机染料,在可见光区域有很强的吸收,光、热稳定性好,并具有较高的电子亲和能(较低的LUMO能级),成为目前机太阳能电池领域有望替代富勒烯类衍生物的最好的n型受体材料,然而由于苝二酰亚胺类受体分子的大共轭平面结构,分子间很容易形成较强的π-π*相互作用,导致分子堆叠、聚集形成几十纳米到几百纳米的结晶区,激子很容易发生分子间复合,过大的结晶区极大地阻碍了激子的扩散分离