手性含氮杂环合成中的硫叶立德反应

来源 :手性中国2014学术研讨会 | 被引量 : 0次 | 上传用户:yufengdong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
许多具有生物活性的天然产物和药物分子都含有手性杂环骨架,尤其是手性氮杂环骨架,因此,研究含氮手性杂环的高效构建具有重要意义[1].最近,我们发展了三种不同类型的硫叶立德参与的串联反应,分别是[4+1]环化/重排串联反应,[4+1]/[3+2]环加成串联反应和Michael加成/N-烷基化串联反应,并从简单易得的原料出发成功地合成一系列重要的手性含氮杂环化合物[2].
其他文献
The term-photorefractive"(PR)loosely characterizes a material that exhibits a temporal change of its refractive index induced by illumination.[1] Using carbazole group as transporting group and carbaz
So-called hyper-structure photorefractive molecules are covalently linked to different photorefractive functional components necessary to realize the photorefractive effect.Its well known that carbazo
Photorefractive(PR)materials are materials that combine photoconductivity and nonlinear optical(NLO)response to modulate the refractive index of the medium,which have many potential applications in ho
针对分布式电源(DistributedGeneration,DG)并网给电力系统带来的随机扰动,综合考虑配电网运行效益,计及风光时序特性,以经济性、电能质量及环保性为目标,搭建了机会约束规划模型,做好配电网规划.采用混合智能算法求解,即基于支持向量机(SupportVectorMachine,SVM)算法模拟优化变量到目标函数以及约束条件映射的不确定性函数,运用多目标粒子群算法(Multi-Obj
针对现有并联间隙易被工频电弧烧蚀的不足,研究一种局部耐烧蚀型并联间隙防雷装置,由于电极末端采用耐高温材料,增大了并联间隙的耐烧蚀能力,使得装置能有效防止架空配电线路因雷击造成的绝缘子损坏及导线断线等事故的同时,增大了装置的使用寿命.
电动汽车作为一种高效、节能、零排放的交通工具,将成为未来城市的主导。而对充电机的研究,将直接影响未来电动汽车的发展。本文针对传统电动汽车充电机结构的不足,提出了一种高效且高功率因数、低谐波含量、能量双向流动的充电机结构。该结构前级采用三相电压型PWM整流器,后级DC/DC变换电路采用电流可逆斩波电路。针对前级,推导了一种功率前馈的无差拍控制,该方法实现了系统的快速、无差整流。针对后级,提出了一种基
微型燃料电池热电联供系统作为一种清洁的家用发电设备,在供应家庭用电的同时,可以提供家用生活热水,具有很高的综合能源利用效率,因此受到世界各国的高度重视。开展热电联供系统的模型研究,对实际系统的构建具有很好的参考价值。本文在MATLAB/SIMULINK平台上搭建了家用质子交换膜燃料电池热电联供系统(PEMFC-CHP)模型,针对该系统中水冷式燃料电池的散热特性直接受用户侧热水器水温影响的特点,提出
通过受油器的结构及相关数据分析,改造后的受油器结构总体较为合理,结构相对简单,考虑设备实际运行对其造成的影响,可以通过改进往复轴与恒压油管的连接方式、缩短恒压油室轴套的长度、适当放大轴承与往复轴配合间隙、轴承两侧加工成倾斜的圆锥斜面、增大浮动瓦的端面总间隙等方法,优化受油器的结构,从而满足设备实际运行要求。
胺基催化发展十余年来,有关α-取代酮的不对称催化转化仍是没有实现的挑战性难题.基于我们发展的仿生伯胺催化体系,[1]成功实现了取代β-酮酯的不对称胺基催化反应.最近还将胺基催化与过渡金属催化结合,实现了β-酮酯的不对称α-氧化胺化反应、氧化耦联反应和烷基化反应等系列构造开链季碳的转化反应.[2]本次报告主要围绕上述进展.
会议
In this talk, the effort in developing useful organocatalyzed domino processes as a powerful strategy for access to biologically interesting compounds will be discussed.Meanwhile, the establishment of
会议