Studies on reinforced concrete beam-column joints strengthened by chamfers

来源 :第十二届中日建筑结构技术交流会 | 被引量 : 0次 | 上传用户:lgl5201314
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Beam-column joints("BCJ")are critical members in low-rise to mid-rise buildings.Failure of BCJ may lead to collapse of building.As a result,many methods have been proposed to strengthen non-seismically designed BCJ.Recently,a comprehensive study has been commissioned with the objective to develop a strengthening strategy for BCJ using chamfers.Specifically,chamfers are proposed to be installed at beam-column corners and under the soffit to alleviate the undesirable joint-shear failure.This study comprises both experiments and numerical simulations.Tests were carried out on four 2/3-scale BCJ,comprising one control specimen and three strengthened specimens.They were subjected to moderate level of axial load and were loaded to failure under quasi-static cyclic loading.Parameters to be considered included chamfers with and without reinforcements and size of chamfers.It has been shown that chamfers are effective to protect a non-seismically designed BCJ against failure at joint core.Mode of failure is shifted from joint-shear in the control specimen to column-flexure in the strengthened specimens.To enhance the performance of BCJ,size of chamfer is more crucial in comparison with reinforcements in chamfers.WCOMD,a non-linear finite element programme for 2-dimensional reinforced concrete structures,was used to perform the numerical simulation.It is based on smeared model with incorporation of elasto-plastic fracture mechanics for concrete,tension stiffening/softening and taking into account the effect of cracking.Hysteresis behaviours of the specimens as per predicted by WCOMD are in close agreement with the test data obtained from the experiments.Strain in chamfers ranges from-750 micron to 500 micron,regardless of the provision of reinforcements.This confirms that the effect of chamfers is mainly affected by size of chamfers.Joint-shear failure is effectively suppressed by chamfers as evidenced by limited cracking and low strain concentration inside chamfers.
其他文献
会议
会议
会议
随着建筑高度的不断增加,传统剪力墙已经不能满足工程的要求,在此背景下,为了利用钢与混凝土两者的优点来改善剪力墙性能,学者们提出了钢-混凝土组合剪力墙.为了深入研究该类型钢管高强混凝土剪力墙的轴心受压机理,本文设计了一组钢管高强混凝土柱与一组钢管高强混凝土剪力墙(一组为3个试件,每组试件完全相同)。根据试件的破坏模式以及试验数据的分析,给出钢管主应变大小与转动方向以及钢管高强混凝土剪力墙外部混凝土部
结构的抗震性能通常用结构在地震下的动力响应来衡量,然而结构的震后可修复性也应该作为衡量结构抗震性能的重要指标.钢筋混凝土框架结构的软弱层破坏机制往往造成软弱层框架柱的集中变形,阻碍了结构的震后修复.摇摆墙结构通过在框架中通长布置连续构件,为解决框架结构的集中变形提供了一种解决方案.以前的研究往往集中在摇摆墙框架结构的地震响应上,并没有充分考虑摇摆墙框架结构的破坏模式和可修复性.本文提出了一种新型的
支撑作为主要的抗侧力构件之一,可以有效地提升框架结构的侧向刚度.在中震和强震时,传统有支撑框架中的钢支撑会出现受压屈曲,受压侧的承载能力迅速退化,其耗能能力相比失稳前大幅降低.本文基于对芯材进行局部削弱的设计思想提出一种新型开孔板式全钢BRB,与之前的研究者提出的BRB不同之处在于其受压阶段芯材的新型变形机制。普通BRB的芯材随着压力增大,长度随之缩短,在屈曲约束组件作用下出现高阶屈曲模态;本文所
会议
地震時鋼構造骨組における柱梁接合部は延性破断する可能性がある。これまで延性破断に決まる柱梁接合部の塑性変形能力の評価方法は実験をベースに成るものがほとんどであり、これらの実験では、鋼材の降伏比、梁のモーメント勾配、載荷履歴などは重要なパラメーターに成る。しかし、実験では、全てのパラメーターをカバーすることができない。本研究では、解析に基づく柱梁接合部の塑性変形能力の評価方法を試みる。一方、長周期地
本研究では,径が異なる二つの鋼管を同心円上に配置し,両鋼管の間のみにコンクリートを充填した二重鋼管合成柱,および全断面がソリッド式であるコンクリートを充填した二重鋼管合成柱について,一定軸圧縮力下(軸力比=0.5)の正負繰り返し水平加力実験を行った.その結果,全断面がソリッド式二重鋼管柱は中空式二重鋼管柱より軸縮みの進展が遅くなり,耐力低下の度合いが小さくなり,超高層建築物の建物内の周辺に設置する
Precast concrete frames can bring tremendous benefits to a project in terms of its speed of construction,quality of finish, durability, thermal mass properties and whole life costs. But the seismic pe