基于扫描电化学显微镜(SECM)并以DNA超级链自组装实现信号放大的超灵敏DNA生物传感平台

来源 :2016全国生命分析化学学术大会 | 被引量 : 0次 | 上传用户:sjhung888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  近年来,以DNA超级链技术作为信号放大方法的生物传感技术开始受到越来越多人的关注[1]。我们将这种信号放大技术与扫描电化学显微镜相结合,构建了一种灵敏度很高的DNA生物传感平台。首先,在金基底上固定了一端修饰巯基的可与目标DNA互补杂交的捕获DNA片段,而作为信号来源,我们将由生物素标记的一系列互补DNA片段杂交形成的DNA超级链和亲和素标记的辣根过氧化酶(HRP)通过生物素-亲和素作用结合在一起,与被捕获在基底DNA片段上的目标DNA相结合。
其他文献
基于酶生物燃料电池的自供能生物传感器是一种以电池性能输出作为分析检测信号的一类传感器,该传感器信号与被检测分析物浓度成比例关系。与传统传感器相比,自供能生物传感器检测过程中无需施加额外电源,其具体优点主要表现在:设备简单、抗干扰能力强、能实现简单、快速、实时检测。检测过程中无需电化学工作站等供电设备,仅需简易电压表便可实现检测,故检测设备易携带,能实现实时监测[1]。
Hg2+是一种毒性很高的重金属污染物,在体内聚积后会严重损害人类健康。因此,发展定量准确测定Hg2+浓度的分析方法一直是分析化学的研究热点之一。荧光分析法由于灵敏度高、分析成本低、操作简便等优点越来越受到人们的重视。
本研究制备了一种基于模拟酶协同催化的高灵敏度分子印迹电化学发光传感器(MIP-ECL),检测超痕量的钴离子。检测的过程通过分子印迹敏感膜表面上的Co-PAN 配合物(1-(2-吡啶偶氮)-2-萘酚合钴)与标记了辣根过氧化物酶(HRP)的Co-PAN(HRP-Co-PAN)之间的取代反应,即竞争过程。
基于Alivsatos的课题组对于纳米粒子阳离子交换的研究[1],Zhong等首先报道了将CdSe、ZnS纳米粒子的阳离子交换反应应用于生物传感器中[2]。我们课题组在前期研究中报道了利用CuS纳米粒子阳离子交换反应化学发光检测DNA/microRNA[3]。为进一步扩展阳离子交换反应的应用范围,我们这里将阳离子交换反应与纳米金比色法相结实现对DNA甲基化酶做定性和定量的检测。
本文提出了一种简单直观检测ATP的分析方法。通过ATP与ATP适体特异性结合,引发DNA的酶促循环放大反应,产生足量的Reporter DNA可以作为桥梁链将分别修饰有两种不同DNA链的金胶连接起来,引起金胶聚沉,发生颜色变化,实现ATP的可视化检测。
蛋白质的定量分析在生物医学等领域具有重要意义[1]。凝血酶是一种在人体抗凝、促凝的凝血级联反应中的重要生物活性蛋白[2],其灵敏、快速和低成本检测具有重要意义。“标记型”和“非标记型”电化学传感器已广泛用于蛋白质分析[3]。在此,我们采用一锅循环伏安电沉积法,在玻璃碳电极表面沉积金纳米粒子(AuNPs)-石墨烯复合物,再组装上巯基化凝血酶适配体(经牛血清白蛋白BSA封闭),通过检测电极表面吸附的亚
适配体传感器设计原理大多数基于适配体结构改变、构象转化或适配体改构,目前学者们发展了多种信号放大型适配体传感器包括夹心法传感器、竞争法传感器等。在此基础上,截断适配体作为一种强有力的信号增强方法逐渐发展起来并广泛结合电化学、荧光法、比色法等技术最终实现对靶标分子的有效检测。
硫醇在动物和人的生理活动中起着重要的作用,区分不同类型的硫醇是一项具有重要意义且有挑战的课题[1]。本文中,基于硫醇金属离子相互作用和金属离子高效抑制脲酶活性的特性构建了脲酶-金属离子比色传感阵列并用于硫醇区分。不同硫醇对金属离子呈现出不同的亲和力,引起脲酶活性的差异,从而产生不同的比色响应。
禽流感病毒(AIV,Avian Influenza Viruses)是一类宿主于禽类的甲型流感病毒,主要在鸟类中传播,但其中一些亚型(如H9N2、H5N1 等)也可能直接感染人类,不仅会对禽类养殖业造成危害、造成巨大的经济损失,同时也严重危害人类健康[1,2]。因此,建立快速、灵敏的AIV 检测方法对于控制禽流感爆发具有十分重要的意义。
本文发展了一种基于三链DNA 的三聚氰胺均相电化学检测新方法。该方法利用三聚氰胺能特异性结合到三链DNA 中的缺碱基位点[1,2],形成稳定的三链DNA 结构,从而引发DNA 构象改变并被外切酶Ⅲ识别,释放DNA 末端修饰的电化学信号分子----亚甲基蓝。