氢键对香豆素343分子激发态电荷转移过程影响的研究

来源 :中国物理学会2016年秋季会议 | 被引量 : 0次 | 上传用户:dingsiwei2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  采用飞秒瞬态吸收光谱实验方法结合含时密度泛函理论(TDDFT)研究了分子内氢键和分子间氢键对香豆素343(C343)激发态电荷转移过程的影响.实验数据拟合表明,C343在乙腈(ACN)溶剂中只存在一个时间尺度为155 fs的过程,而在二甲基亚砜(DMSO)溶剂中则存在两个过程,时间尺度分别为188 fs和1.432 ps.理论上,对单体C343和分子间氢键复合物C343-DMSO进行了模拟,获得了分子内氢键和分子间氢键作用下C343分子的基态几何构型、垂直激发能、激发态几何构型以及前线分子轨道.综合理论与实验结果,将C343在ACN溶剂中的百飞秒过程归属为分子内电荷转移过程;而夺质子能力较强的DMSO溶剂破坏了C343的分子内氢键并与其形成分子间氢键,所以在DMSO中C343不仅存在百飞秒的分子内电荷转移过程,还存在几个皮秒量级的分子间电荷转移过程.
其他文献
基于飞秒掺铒光纤激光器和高非线性光纤,我们实现了可调谐范围达到720nm的喇曼孤子超短脉冲激光器,填补了激光增益介质不能实现的波长空白.它是基于光纤中的孤子自频移效应1,当飞秒激光脉冲在高非线性光纤中传播时,受到色散和非线性的相互作用,导致了脉冲能量不断从高频分量向低频分量转移,同时低频分量不断向长波长频移.在实验中,用于产生可调谐喇曼孤子的泵浦源是我们自己搭建的锁模掺铒光纤激光器,其重复频率为3
为实现稳定高效的全光纤结构大功率光纤超荧光源,本课题组对基于大模场双包层掺镱光纤的超荧光种子源和光纤放大器进行了理论分析和数值模拟,对超荧光的形成机制、光谱的演化及光纤参数对超荧光特性的影响进行了讨论,在泵浦源、光纤参数和系统结构等方面提出了优化设计方案。随后在此基础上,使用全光纤主振荡功率放大结构对宽带超荧光种子源进行了高功率放大。
我们从实验和理论两个方面研究了飞秒激光脉冲作用下Ar双聚体的电离解离。实验上利用冷靶反冲离子动量成像谱仪(Cold Target Recoil-Ion Momentum Spectroscopy,COLTRIMS),测量了不同强度的飞秒激光脉冲作用下碎片离子的角分布。如图1所示,碎片离子相对激光偏振方向呈现各向异性分布,其中沿着激光偏振方向分布最大,而且半高全宽随着光强增大而变宽。理论上,我们发展
Cr:ZnSe晶体具有近1000 nm的超宽带发射带宽,且其荧光光谱位于2-20μm分子指纹区内,因此大范围可调谐Cr:ZnSe固体激光器的研究具有重要意义.本文报道的中红外可调谐Cr:ZnSe固体激光器采用自建1908 nm掺铥光纤激光器泵浦;1908 nm掺铥光纤激光器由一对FBG(高反FBG对1908 nm信号光反射率为98.9%,部分反射FBG对信号光反射率为10%)分别与掺铥增益光纤的两
炸药分子的激发态在爆轰能量转换过程中起着关键作用,而其激发态动力学过程却很少被研究.本工作利用飞秒瞬态吸收光谱和含时密度泛函理论研究六硝基菧(HNS)、三氨基三硝基苯(TATB)激发态动力学过程.HNS、TATB是光敏性的钝感炸药,具有很好的热稳定性和冲击稳定性.
阿秒脉冲与高次谐波同属于阿秒时间尺度的超快过程,高次谐波过程可以产生阿秒脉冲,同时,也可以反过来利用阿秒脉冲实现对高次谐波的相干、超快调控。我们将阿秒脉冲与单周期强红外场相结合,用来研究氦原子在复合场下的高次谐波的动力学过程。通过不断地改变阿秒脉冲与红外场之间相对延迟,我们计算模拟了高次谐波辐射谱的变化。发现在阿秒脉冲的超快调控下,高次谐波谱被相干调制改变,如图1所示。图1(b)是单独取出cut-
本文考虑以超快激光脉冲的时域瞬态特性为前提,从麦克斯韦方程出发,考虑三阶电极化率的二阶色散近似后,介质的折射率由n0变为n0+n2I,其中n2I是折射率随光强变化的改变量,比例系数n2称为非线性折射率系数。我们首次理论推导了脉冲激光传输群速度中的非线性折射率系数n2,得到它是与三阶电极化率及其一阶色散有关的量。并以量子电抗阻尼一维振子模型[1]为基础,在远离线性吸收和双光子共振吸收区域,量化模拟了
Ultrafast transient absorption(TA)spectroscopy was employed to investigate the thermal annealing effect on the charge transfer(CT)in bulk heterojunction(BHJ)all-polymer solar cells(all-PSCs)utilizing
我们数值求解半导体布洛赫方程(SBEs)得到了强中红外场作用半导体固体产生的高次谐波。模型中包含最高价带和最低导带之间的极化作用和能带内部的宏观电流,分别得到带间和带内谐波。同时用布洛赫态展开波函数,求解了速度规范下的含时薛定谔方程(TDSE),这两种方法所得谐波谱与实验结果都符合较好。
我们从理论上研究了分子强场隧道电离波包的相位结构,并提出了分子量子轨道蒙特卡洛模型(Molecular Quantum Trajectory Monte Carlo Model,MO-QTMC)来描述分子电离波包在强激光驱动下的动力学过程.利用MO-QTMC模型,我们成功地再现并解释了M.Meckel等人在实验上观测到的氮气分子取向依赖的光电子动量分布[Nat.Phys.10,594(2014)]