高应变响应蚕丝纱线电阻式拉力传感器的研究

来源 :2017中国生物材料大会 | 被引量 : 0次 | 上传用户:king_casper
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  柔性生物相容拉力传感器在电子皮肤、可穿戴电子设备等智能纺织材料中具有非常重要的研究价值,本文研制了一种质量轻、可编织或缝制在织物基底、循环稳定性好、应变系数高的蚕丝基纱线状拉伸传感器.采用NaCl 还原AgNO3 的方法制备的银纳米线,制成导电浆料.利用自制的缴丝、并线、加捻、上浆一体装置得到的蚕丝纱线,表面涂层银纳米线获得蚕丝导电纱线,将其编织成不同针织组织结构的复合纱线,获得了生物相容的拉力传感器.所获得的银纳米线长度为50μm,直径约为20nm,自制的加捻上浆装置捻度可调,银纳米线可以均匀的涂覆在蚕丝纱线表层.应力传感器两端的电阻随着拉力的增加而减小,应变系数可达18,是传统金属应变传感器的10 倍以上,最大应变可达15%,可测量的频率范围为0.01Hz-10Hz,在循环2000 次时电阻增大3%,循环稳定性好.纱线两端电阻在拉伸时减少主要是因为针织结构的蚕丝复合纱线拉伸时纤维及纱线之间接触面积变小.本文研究的基于天然蚕丝纤维的拉伸传感器可以为生物相容性应力传感提供重要的研究思路,在可穿戴智能纺织材料中具有非常重要的研究意义.
其他文献
针对镁合金作为组织工程血管支架的体外培养,因其活性高易腐蚀,在支架与细胞共培养形成血管组织的过程中,镁离子浓度会对细胞凋亡产生影响,故对其做表面改性研究。本文基于多巴胺对基材的强粘附性能和良好的细胞相容性,结合水热处理层层自组装得到氢氧化镁与聚多巴胺的复合膜层。利用FESEM,XPS,FTIR,原子力显微镜和静态水接触角测试仪对镁表面膜层的形貌、成分、粗超度,亲疏水性进行表征,分析膜层结构和探讨多
光动力治疗是一种治疗肿瘤的新疗法,其作用机理是通过光照射光敏剂分子富集的组织,激发其发生光敏效应,产生单线态氧,从而破坏组织。二氢卟吩e6(Ce6)作为新型的光敏剂,是光动力治疗恶性肿瘤的有效药物之一,但是Ce6 具有水溶性差,生物体内不稳定等缺点。脂质体因具有良好的组织相容性、细胞亲和性、靶向性和缓释性等性质被广泛地用于抗肿瘤药物的研发中。然而,脂质体也存在稳定性差、易被清除、靶向性差等缺点。同
肿瘤是当今人类最严重的疾病之一,其早期诊断和靶向治疗是当今研究的热点和难点。黑磷烯纳米材料具有良好的生物化学性能,引起了研究者的极大兴趣。黑磷烯在不同波长的激光(660nm 和808nm)照射下可分别产生单线态氧和释放热量,进而杀伤细胞,可用于肿瘤的光动力和光热治疗。在本研究中,我们通过水热法一步合成黑磷烯包裹的Fe3O4 磁性纳米粒子并利用电镜、原子力显微镜、X 线衍射、拉曼、紫外光谱及傅里叶红
聚乳酸由于具有良好的生物相容性和可降解性,在生物医学领域得到了广泛地关注。尽管聚乳酸具有优异的可降解性能及生物相容性,但是性脆、断裂伸长率小、韧性差、热稳定性差等问题限制了其应用范围。因此,需要对聚乳酸进行改性,以提高其综合性能。与其他几种改性方法相比,共混改性具有非常明显的成本优势。然而,共混物之间相容性差对复合材料的性能具有很大的影响。近年来,反应挤出共混成为一种制备聚合物共混物的新方法,其是
氧化铱作为一种无机材料,具有良好的抗腐蚀性能和生物相容性,它的可逆电化学反应特性使其具有高安全注入电荷量和低电极阻抗,这些性能使氧化铱被广泛应用于电极材料或微型化神经电极阵列。但是单纯的氧化铱机械性能较差且金属铱的价格昂贵,因此,在其他机械性能良好的基体材料表面修饰氧化铱涂层是一种常用的方法。射频磁控溅射能在低压、低温下以较大的沉积速率制备薄膜,且制备的薄膜致密光滑、均匀性好,与基底结合强度高。然
在医用钛表面电化学沉积构筑钙磷盐涂层是医用钛表面生物活性改性的重要方法 之一,但通常由此所得到的涂层与基底的结合力欠佳。仿贻贝粘连蛋白的聚多巴胺(PDA)具有极强的粘附性,能够在各种基质表面自聚成膜,可同时提高材料表面亲水性和生物 相容性等,因而被广泛用于生物材料表面修饰[1]。本研究基于阴极电化学沉积法,在医 用钛表面成功构筑了钙磷盐/聚多巴胺复合涂层,并对其复合机理、复合膜层的理化性质 和生物
运用盐模板一步碳化活化法制备了多级孔分布的氮掺杂的纳米碳片,所制备的多孔碳具有较大的比表面积和较大的孔容,通过改变退火温度和物料比可得到不同含氮量和孔隙率的多孔碳,将其运用到超级电容器和锂离子电池电极材料上获得了优异的电化学性能。
目前,聚丙烯(PP)补片已应用于切口疝修补,但是由于其生物相容性差而引发了严重的并发症。细菌纤维素(BC)具有良好的生物相容性和力学性能,能够促进细胞的黏附和增殖。大鼠腹壁修复动物实验结果表明BC 具有防粘连的作用,可以取代PP成为新的疝修补材料。通过静电纺丝技术将BC 和高分子材料复合得到具有高强度和良好生物相容性的复合材料,然后确定网片的孔径大小及孔隙率分布使植入时细菌不能进入而细胞能够长入网
智能聚合物微球的合成及应用已经成为国内外学者们研究的热点之一。已报道的智能聚合物微球多受控于pH 值、温度、光照、氧化还原剂等刺激方式。然而,不同的环境需要采用不同的刺激响应方式。因此,新的刺激响应方式的探索具有重要意义。假如聚合物微球能够像人类“呼吸”一样对气体(如温室气体CO2)刺激做出响应,这将有望在更多领域找到应用的可能。
通过对癌细胞进行矿化提出一种不依赖药物的癌症治疗新策略。在多数癌细胞表面有较高的叶酸受体,可与培养基中的叶酸特异结合,结合到受体的上的叶酸羧基端能富集培养基中的Ca2+,在细胞培养环境中,培养基中的磷酸根会与细胞表面高浓度的钙离子形成磷酸钙矿物,并将癌细胞包裹,以此实现癌细胞的仿生矿化。磷酸钙的形成会对癌细胞造成损伤导致细胞死亡,以实现对癌细胞的杀伤作用(图1)。在荷瘤小鼠模型实验中研究发现,癌细