纳米颗粒及共溶剂对反渗透复合膜性能的影响

来源 :第九届全国膜与膜过程学术报告会 | 被引量 : 0次 | 上传用户:jiachengpu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  目前反渗透膜技术研究较成熟的是聚酰胺复合膜。为了改善膜的分离性能,进一步降低产水成本,采用多种方法对膜的结构进行了改性。(1)以介孔二氧化硅纳米颗粒为纳米填充颗粒,通过单体间苯二胺(MPD)与均苯三甲酰氯(TMC)发生聚合,将纳米颗粒引入到聚酰胺的膜层中,在成膜过程中由于纳米颗粒的影响,使得膜结构发生变化,一方面聚酰胺的交联度下降,使膜具有更大的孔径和表面具有更多的极性基团,另一方面纳米颗粒的孔会为水分子提供额外的通道,这都将使膜的水通量增加。(2)以甲酸乙酯为共溶剂添加到有机相中,通过界面聚合法使单体间苯二胺(MPD)与均苯三甲酰氯(TMC)发生聚合,在聚砜支撑层上形成一层聚酰胺薄膜,制备得到聚酰胺复合膜。共溶剂的添加增加了界面聚合的反应区,进而影响了聚酰胺层的表面形貌及结构。随着共溶剂含量的增加,反渗透复合膜的水通量逐渐增加,并且保持较高的截盐率(>90%)。结果 表明,共溶剂辅助界面聚合法可以有效的改善反渗透复合膜的分离性能。
其他文献
正渗透是国际上最前沿、最具潜力的脱盐和水净化技术,其核心是正渗透膜,但膜支撑层中内浓差极化严重降低了水通量,是该技术发展和应用的瓶颈.本人及课题组以高水通量正渗透膜为研究目标,着重研究膜支撑层材料的优化设计、与活性层匹配效应、活性层结构与分离性能的调控和强化等,进而揭示膜制备工艺、膜结构和膜性能的构效关系,得到较为成熟的膜制备技术.本研究获得的正渗透膜以最大程度降低内浓差极化,在保持优良脱盐率(大
利用新纳米材料特性,通过微观结构调控宏观性能,是制备节能、高效的水盐分离膜的发展趋势之一.作为新型碳质纳米材料,石墨烯具有极大的宽厚比、超高的机械强度、化学稳定性和抗生物污染性等优势,是理想的分离膜材料.本文基于轻度还原的氧化石墨烯(rGO)和环境友好的胺分子壳聚糖,在聚砜超滤膜载体上组装制备具有层状结构的薄层石墨烯复合膜.通过调控氧化石墨烯的还原度和石墨烯-壳聚糖组装结构,实现对膜内石墨烯层间距
正渗透(FO)是一项新兴的膜分离技术,其低能耗、低污染的优点近年来吸引了众多科学家们的关注。聚酰胺薄膜复合膜由于其具有较高、高截盐率,和较广泛的适用条件,是最常采用的一种正向渗透膜。但传统的界面聚合法得到的聚酰胺薄膜复合膜其微观结构难以调控,具有高度各向异性,加上其高交联的芳香结构相对疏水,从而使得其水通量相对较低且具有一定的污染倾向。在本工作中,我们从基膜的化学改性、界面聚合单体的分子结构优化与
耐溶剂纳滤膜作为纳滤膜的重要分支之一,其分离对象为有机溶液,特别适合化学及制药行业中有机物的分离纯化。我们首次采用亲水性单胺Tris在铸膜液中接枝改性聚酰亚胺主链,再通过传统的相转化及二胺交联方法,制备了Tris改性的交联聚酰亚胺耐溶剂纳滤膜。同时采用邻苯二酚与聚乙烯亚胺作为底物,模拟多巴胺自聚,在聚丙烯腈基膜上共涂覆一层带正电的选择层,得到正电纳滤膜。研究表明制备的新型纳滤膜对常见无机盐、重金属
近两年,我们在低压大通量纳滤膜方面做了一些工作,也取得了一些研究进展.首先,在前期大通量超薄纤维素纳米纤维超滤膜的基础上[1],经界面聚合制备了交联PEI复合膜,用于低压纳滤膜过程.该膜渗透性好,对有机染料分子和无机盐均具有较高的截留率.如厚度约77 nm的膜,其平均孔径约0.45 nm,截留相对分子量为824 g mol-1、纯水通量为32.7 L m-2 h-1 bar-1.为了提高PEI-b
会议
传统聚酰胺(PA)复合膜存在通量提高截留下降的问题,为此提出用氧化石墨烯(GO)对其进行改性的方法.此前有将GO加入到界面聚合水相中进行改性的研究,但效果不佳,本实验将酰氯化GO (GO-COC1)加入到界面聚合有机相中,选取特定的分散剂,通过界面聚合的方式在基膜上表面形成一层含有片层GO的超薄PA层.其中GO-COC1是通过对GO进行酰氯化反应制备.分别通过界面聚合方法制备传统PA纳滤膜,水相添
纳滤可有效分离小分子和盐离子,越来越广泛的应用于废水处理、水纯化、脱盐、食品加工和生物分离等领域。纳滤分离机理主要包括分子排阻和电荷作用,纳滤膜的分离层被认为是由聚合物链段组成的三维网络,其分离行为主要取决于分离层的有效孔径和所带电荷。纳滤分离层的材料通常是亲水且在水溶液中易水合以及离子化,因此纳滤分离层的构象和离子化状态会受到周围环境的影响,尤其是pH和离子强度。纳滤作为一种典型的压力驱动膜过程
为提高聚哌嗪酰胺复合纳滤膜的渗透通量和抗污染性能,选择三乙醇胺(TEOA)、二乙醇胺(DEA)和丙三醇(GLy)作为改性单体,通过酯化或酰胺化接枝反应对PIP/TMC初生态纳滤膜表面进行功能化改性,探究不同改性工艺对复合膜结构和分离性能的影响规律.研究结果表明:在25℃、0.5 MPa的操作条件下,未改性膜PIP/TMC的纯水通量为80.6 I/(m2 h),改性膜PIP/TMC-TEOA、PIP
金属-有机骨架材料(Metal-Organic Frameworks,MOFs)由于具有巨大的比表面积、很高的空隙率,完全暴露在表面/孔道的金属离子可以提供100%的可利用率等优点而被广泛地应用于催化、气体吸附等领域,而基于MOF的纳滤膜研究较少.本文通过合成不同形貌的MOF,考察了MOF形貌、用量等对纳滤性能的影响.结果 表明:MOF形貌对纳滤膜渗透通量影响较大,对二价盐的截留较高,例如,对Mg
分别采用界面聚合和相转化的方法制备了无机-有机混合基质纳滤膜.(1)以聚砜超滤膜为基膜,以均苯三甲酰氯为油相单体和哌嗪为水相单体,采用界面聚合法嵌入改性后的多壁纳米碳管制备聚酰胺复合膜.采用傅立叶红外光谱(FTIR)、拉曼光谱(RAMAN)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)和静态接触角表征了复合膜的结构,结果表明基膜表面复合了一层聚哌嗪酰胺膜.继而对接枝聚甲基丙烯酸甲酯碳纳米管