强激光驱动高能轫致辐射源的特性表征与透视照相研究

来源 :中国物理学会2016年秋季会议 | 被引量 : 0次 | 上传用户:schoolnowl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  目前超短超强激光产生微焦点高能轫致辐射源研究,主要采用两种方式:一是飞秒激光器与气体靶相互作用产生的高能尾场加速电子,尾场电子通过高Z转换靶获得1,2;二是皮秒束激光器与固体靶相互作用产生的相对论强流电子束,电子束在固体靶中碰撞输运获得3.中物院激光聚变研究中心在45TW飞秒激光器上开展了基于尾场电子加速的高能轫致辐射源特性表征与透视照相一系列研究.首先,通过喷气等优化尾场电子加速,获得了能量40MeV、发散角5mrad的准单能电子束.
其他文献
会议
应变是调控过渡金属氧化物的结构与物性的典型手段.我们以BiFeO3中的位错与外延薄膜为例,研究了BiFeO3的结构与物性的应力敏感特性.通过像差校正高分辨电子显微学与电子出射波重构,结合Peierls-Nabarro位错模型,在原子尺度揭示了BiFeO3薄膜中刃位错的应变场.在模型中引入约1%的均匀剪切应变,将显著提高位错模型与实验测量的一致性.拟合结果显示BiFeO3的泊松比约为0.3,也与理论
从原子尺度动态研究材料变形的原子机制是理解材料变形机制本质的基础,可以为开发、设计高性能金属纳米材料提供理论的指导;也开辟了人们认识材料变形机制的新层次,为新规律的发现和新理论的建立提供了新的机遇.目前,人们对于纳米材料变形的原子机制的理解还非常依赖于分子动力学模拟.实验上,一些传统的观察方法只能通过衬度的变化推断材料的塑性变形行为.要实现对材料变形的同时,还能原位的观察其原子结构的变化目前还是国
26届国际液晶大会在美国Kent召开。图片是参加会议的部分国内与在美工作的液晶同仁合影。
会议
热电材料是利用Seebeck效应和Peltier效应实现热-电直接转换的能源材料,在工业余热发电、特殊电源、快速致冷与温控等技术领域具有重要的应用前景.近年来,高性能热电材料的设计合成取得长足的发展,特别是通过基于强化声子散射的多尺度微观结构的调控,在多种体系热电材料中实现了晶格热导率的大幅降低和热电优值(ZT)的提升.例如,针对笼状结构方钴矿(CoSb3)化合物,通过不同振动频率的多原子组合填充
会议
利用超强激光加速重离子一直是激光等离子体领域的一个难题。在TNSA机制下,质子会在鞘层场中优先获得加速,抑制重离子加速过程。通过光压加速机制,可以产生10 MeV/u量级的重离子,但在目前的激光条件下离子能量很难进一步提高。我们通过精巧设计的双层靶结构,利用PW激光器在实验中产生了600 MeV(50MeV/u)的碳离子。数值模拟显示重离子经历了RAP+TNSA的级联加速过程。通过这种级联加速过程
近年来,超短超强激光技术的快速发展在全球范围内掀起了强场物理研究和应用的热潮,其中基于激光等离子体相互作用的新型粒子加速器和超快光源研究取得了尤其突出的进展。对于这些技术进一步的发展,对激光等离子体相互作用的精准控制和精细诊断能力至关重要。我们成功地发展了一套基于自动反馈优化的全光学方法,可以在气体和等离子体中制造出任意空间密度分布的等离子体结构,能精准控制复杂等离子体结构的产生及对其重要参数的精
在激光尾场加速中,我们对两束相向传播的激光在低密度等离子体中离轴碰撞引起的电子注入和加速过程进行分析.2D3V的PIC模拟结果显示,相比于两束激光正碰的情况,离轴碰撞产生的电子束具有更小的能散和更高的能量.理论分析表明,离轴碰撞将离轴电子注入到等离子体空泡内,使电子束在相空间分布更加集中是产生高品质电子束的内在原因.在本文中,我们同时也对离轴碰撞条件下注入脉冲强度对电子束品质的影响进行了研究.模拟
Tunable X-ray synchrotron radiation(SR)sources have wide applications.X-rays for such applications are mostly generated from SR facilities,which are usually bulky,costly and not able to satisfy the in
对等离子体尾波加速器中以及高能量密度物理中广泛存在的超强电磁场结构的诊断有助于深入理解背后的物理机制。但是,由于这些电磁结构通常具有瞬态(演化时间在fs到ps量级),结构微小(典型尺寸μm到百μm)、强度高(电场GV/m量级,磁场MG量级)等特点,目前缺乏简单有效的诊断工具。等离子体尾波加速器产生的电子束具有超短(束长在fs量级)、相对论性(能量几十到几百MeV)、准单能(能散<~10%)、源尺寸