Hierarchical SnO2 Nanosheet/SiC Nanofibers for Photocatalytic Water Splitting

来源 :中国第四届静电纺丝大会(CICE2016) | 被引量 : 0次 | 上传用户:QQQ16416
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Solar-driven photocatalytic water splitting to produce hydrogen(H2)as the future energy has triggered considerable interests.To date,various photocatalysts,such as metal oxides,sulfides,carbides and their composites have been extensively investigated for photocatalytic H 2 production(PHP).
其他文献
在本文中,通过以PAN、二甲基咪唑配体(MIM)混合静电纺丝得到的复合纳米纤维(MIM/PAN)为模板,利用表面原位生长的方法在其纤维表面生长一层晶体Zn-Co-ZIF-n,从而制备一种核壳纳米纤维(Zn-Co-ZIF-n为壳/PAN为核)。通过800℃高温碳化过程Zn-Co-ZIF-n/PAN核壳结构纳米纤维转化成了以氮掺杂的碳纳米纤维(NCNFs)为核层,碳包覆的双金属纳米粒子(Zn/Co@C
静电纺丝技术在构筑一维纳米结构材料领域发挥了非常重要的作用,其制备的纤维具有比表面积大、孔隙率高、易表面功能化等优点。本文采用静电纺丝与光聚合结合的技术制备了核壳结构的纳米纤维,其中以静电纺丝得到的聚丙烯腈(PAN)、三聚氰胺(C3H6N6)和氯化铁(FeCl3)的混合物为核层,以光引发聚合得到的聚噻吩(PT)为壳层。随后将核壳结构的纤维碳化得到Fe/N/S共同掺杂的碳纳米纤维,这种纤维可用作氧还
以合成的双官能团苯并噁嗪为载体和固定剂,通过TiO2纳米颗粒在静电纺TiO2纳米纤维膜表面的原位非聚集生长,制备出具有良好柔性和多级介孔结构的TiO2纳米颗粒修饰的TiO2纳米纤维膜复合材料(TiNFNPs)。
2002年,结合电纺和溶胶-凝胶技术获得金属氧化物纳米纤维以来,电纺技术被广泛应用于制备陶瓷纳米纤维,在催化领域获得突破性进展[1]。
高效、太阳光驱动的具有光催化活性和可回收再利用性的TiO 2/Ag异质结构纳米纤维膜可使用一种简单通用的原位生长法制得。通过调节钛前驱体的浓度和水解过程,二氧化钛纳米颗粒在高比表面积的电纺聚丙烯腈(PAN)纳米纤维上生长,形成厚度为20 nm的连续介孔壳层以便与机污染物充分接触。
作为一种天然催化剂,酶因其良好的选择性和较高的催化效率引起了人们的广泛关注。然而,天然酶在实际催化应用中常常受到存储、运输等方面的限制。因此,人们一直致力于开发出能与天然酶的催化性能相媲美的人工模拟酶。
我们通过静电纺丝技术与高温煅烧技术相结合,成功制备出形貌良好的四氧化三钴/二氧化铈复合纳米纤维,进一步利用氧化物与单体3,4-乙撑二氧噻吩之间的氧化还原作用,将四氧化三钴/二氧化铈纤维转化为四氧化三钴/二氧化铈/聚3,4-乙撑二氧噻吩复合纳米纤维。
静电纺丝是一种方便、高效、通用地获得纳米纤维的手段。静电纺纳米纤维由于其小尺寸、大比表面积以及高孔隙率等特性被应用在催化、纳米电子器件、能源与环境、生物医药等领域[1,2]。
通过静电纺丝、碳化和化学还原等方法我们制备出了Ni/Pt/CNFs(图1a)。通过XRD、Raman、XPS等手段进行了结构及性能的表征,形态特征的表征采用了SEM、TEM和BET等技术,电化学性能的测试采用了循环伏安法和计时电流法。
随着纳米技术的发展,各种各样制备纳米材料的方法与技术涌现出来。静电纺丝作为一种简单、快速、通用和低成本制备纳米纤维的方法,受到了越来越广泛的关注。