阀片式抗蛇行减振器力学模型研究

来源 :西南交通大学 | 被引量 : 0次 | 上传用户:y1271
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着减振器逐步国产化的要求和不断优化车辆动力学性能的需求,有必要对抗蛇行减振器建立力学模型,研究其内部结构、工作原理及阻尼特性,为抗蛇行减振器的结构设计、试验调试提供理论指导。阀片式抗蛇行减振器相比滑阀式结构,具有成本低廉、便于通过增加或减少阀片数量调节阻尼阀节流特性的优点,本文主要针对阀片式抗蛇行减振器开展研究,主要工作和结论如下:(1)基于某型阀片式抗蛇行减振器展开研究,根据阻尼阀片具有承受间断、非均布载荷的特点,通过有限元方法模拟阀片真实受力情况,利用仿真结果对大扰度理论进行修正,结合修正函数和大扰度理论,得到阀片变形量数学模型。(2)分析减振器的工作原理和结构特点,依次建立油液模型、流量损失模型及阻尼阀系模型,并结合减振器内部结构参数和油液流动路径,建立AMESim阀片式抗蛇行减振器力学模型。对所研究减振器进行台架试验,分别从静态特性和动态特性与AMESim模型仿真结果进行对比,结果表明本文所创建力学模型具有较高的仿真精度。(3)利用AMESim阀片式抗蛇行减振器力学模型依次研究阻尼阀系参数、油液属性参数及橡胶节点参数对阻尼特性的影响,分析结果表明:活塞常通孔直径和阀片堆等效厚度分别影响着减振器卸荷前后的阻尼特性,即活塞常通孔直径越小,节流能力越强,减振器阻尼力越大;阀片堆等效厚度越大,阻尼阀刚度越大,减振器卸荷力越大。无论活塞速度大小,油液含气量和橡胶节点刚度对减振器动静态特性都有较大的影响,即油液含气量越大,阻尼力、动态刚度及阻尼系数越小;节点刚度越大,阻尼力、动态刚度及阻尼系数皆越大。(4)利用AMESim/Simulink/Simpack建立联合仿真实时交互模型,根据阻尼特性最灵敏的关键结构参数,分别从车辆稳定性、平稳性及曲线通过性能研究其对车辆动力学的影响规律,分析结果表明:活塞常通孔直径主要影响着车辆稳定性和平稳性,当直径选取范围为0.95~1.05 mm时,动力学性能更优;增大阻尼阀等效厚度和橡胶节点刚度能够提高车辆的非线性临界速度,但也会恶化车辆曲线通过性能,当节点刚度取30~45 MN/m范围时,车辆动力学性能较好;随着油液含气量的增加,会极大的降低车辆稳定性和平稳性,在装车之前应对减振器进行排气处理。
其他文献
Web 2.0时代到来,用户间的联系越来越紧密,问答社区是时代的产物,应时而生且备受青睐。随着用户量的增长,问题日益增多,导致信息过载,越来越多的问题没有及时得到回复甚至没人回复,社区用户需要在海量的问题中搜索自身感兴趣的问题,严重阻碍了社区发展。精准邀请下发问题可以很好地解决以上问题,而预测技术则决定了能否做到精准邀请。为此,本文展开了对问答社区回帖预测的研究。本文利用深度学习模型、树模型和集成
随着视频监控技术的飞速发展和视频监控设备的大批量部署,如何利用监控系统的海量视频数据逐渐得到关注。由于技术的限制,以往对监控视频的使用只限于视频保存和查看。伴随着深度学习技术在计算机视觉领域的迅猛发展和硬件设备计算能力的显著提升,以往一些难以实现的需求在新技术和新设备的加持下,有了实现的前景和可能。本文将聚焦收银台场景下监控视频的应用,在过去,管理者为了监督收银台店员的服务规范,通常利用“暗访”或
由于REBa2Cu3O7-δ(RE:Y、Gd等稀土元素)超导涂层导体在液氮温区具有高的临界电流密度和上临界磁场以及优异的力学性能,REBCO涂层导体即第二代高温超导带材在电力能源、交通运输、生物医学、航天发展和国防军事等领域有广泛的应用价值。在超导材料的诸多应用中,超导磁体是目前最大的工程应用。受加工工艺限制,现行带材长度无法满足线圈绕制的需求。同时为满足不同磁场形状和场强及闭环电流模式等,超导磁
高甘油三酯血症(hypertriglyceridemia,HTG)是指空腹血清甘油三酯(triglyceride,TG)水平高于1.7 mmol/L,其中血清TG水平介于1.7~11.4 mmol/L之间为中度HTG,TG水平高于11.4 mmol/L为重度HTG。近年来,研究表明HTG是诱发急性胰腺炎(acute pancreatitis,AP)的一种危险因素,并且血清TG水平越高,AP的发病率
固定辙叉由于其本身的结构不平顺,列车通过时,必将引起较大的冲击力,同时辙叉内部会产生复杂的内力作用,在受到连续循环复杂应力作用下便会产生滚动接触疲劳裂纹,从而影响其服役寿命。为进一步明确固定辙叉滚动接触疲劳裂纹的萌生位置及疲劳裂纹萌生寿命,探究不同因素对裂纹萌生的影响规律,本文以LM车轮通过9号固定辙叉区为研究对象,运用ANSYS/LS-DYNA建立了具有真实几何形状的三维轮轨瞬态滚动接触有限元模
水性环氧树脂涂料以其加工的便利性以及低VOC排放等优点被广泛应用于轨道交通领域的各个方面。但是,与溶剂型涂料相比,其在力学性能、耐磨性能、耐腐蚀性能等方面仍存在较大差距,导致其在复杂、苛刻环境下应用受限。水环境下乳液分散相对较差以及固化过程中水分蒸发缓慢使涂料基体缺陷增多、致密度下降,是导致上述问题的主要原因。近年来国内外科研工作者对水性环氧树脂的改性进行了深入研究。其中,高分子聚合物共混改性和填
近年来,随着我国人、车、路等交通要素的高位增长,道路交通安全问题也愈发的引发关注,可以有效改善道路交通安全问题的智能车辆已成为研究热点,如何使车辆智能的做出决策控制是智能车辆技术的研究重点。本文从智能车辆转向决策控制技术出发,提出了一种基于深度学习的智能车辆转向决策方法。本文的主要研究内容如下:首先,本文设计一种智能车辆转向决策方法,该方法将车辆转向决策问题转化为已知环境信息和车辆转向状态信息来预
学位
得益于Docker容器轻量级虚拟化的优点,越来越多的企业将Docker集群作为主要的任务执行环境。通常Docker集群中的各个节点上会部署很多不同类型的应用容器来执行不同的任务,当大量任务同时运行和调度时,有资源抢占、负载过度等异常情况出现的可能性,进而导致集群负载不均衡。在这种情况下,对集群运行状态的监控是非常有必要的。对于Docker容器的原生集群Docker Swarm,它虽然有默认的容器调
量子比特是量子信息处理的基本单元。基于约瑟夫森结的超导量子电路是实现量子比特的最有潜力的物理系统之一,通常工作在微波频段。而可见光子是实现量子信息远距离传输的良好载体。因此,在未来的量子网络中,要实现两者的兼容需要微波与光波光子之间的高效率转换。目前实现微波-光波双向频率转换的物理系统主要包括原子系综,磁振子,稀土掺杂固体,电光材料和光机械系统等。另一方面,波导量子电动力学(波导QED)系统可以实