石墨烯热电子发光的温度与辐射特性研究

来源 :国防科技大学 | 被引量 : 0次 | 上传用户:chenhang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
石墨烯独特的二维蜂窝状晶格结构造就了其优异的电学、光学和热学特性,在高频电路、超快光电探测和热电子辐射等方面均有重要的应用前景。近年来,纳米尺度的热辐射特性特别是二维材料的热输运性质吸引了很多科学家的研究兴趣。石墨烯具有超高的电流承受能力、极好的导热系数和极低的热容等独特性质,是一个研究微纳尺度热辐射效应的理想平台。论文中,我们通过构建蝴蝶结颈缩结构和位于不同衬底上的石墨烯器件,研究了石墨烯在电场偏置下的热电子辐射特性,主要研究内容与结论如下:1、获得了电场偏置作用下石墨烯器件沟道中温度分布的高分辨率成像,发现硅基石墨烯器件中的焦耳热大部分通过SiO2基底和与金属电极接触处耗散。由于氧化作用,普通的裸露于空气中的硅基石墨烯器件在失效前,最中心的温度能达到500K左右。通过设计局部颈缩的蝴蝶结结构可有效增强石墨烯中的焦耳热效应,形成器件最中心的局部“热点”,从而提高晶格温度。实验研究发现,中心局域1.5μm和1.0μm的石墨烯器件中心最高温度分别能达到900K和1300K。2、设计研制了六方氮化硼上下包覆的石墨烯蝴蝶结颈缩结构热电子辐射器件,隔离了空气对石墨烯的氧化作用,可使石墨烯器件在较小的外加偏压、电流密度和电功率密度下发出明亮的可见光。与之前学者们研究的无颈缩结构的普通h BN包覆的石墨烯器件相比较(400k W·cm-2),发出可见光的电功率密度小了5倍。随着外加偏压的增加,光谱强度也随之增强。研究了h BN/空气、SiO2/Si界面形成的光子微腔对辐射光谱的调控作用,辐射光谱能通过外加偏压进行有效的调控,在较高偏压下至可见光范围。3、采用CVD生长制备的石墨烯,利用原子层沉积法制备Al2O3薄膜透明隔离层,研制了4x4的石墨烯阵列发光器件,4列器件具有不同的颈缩结构尺寸,实测发光强度与石墨烯局部结构颈缩尺寸密切相关。这种新方法为实现大规模的石墨烯阵列辐射源的研制生产提供了一条有效的途径。4、模拟计算了SiO2基底上、hBN包覆和表面覆盖Al2O3这3类石墨烯器件中的温度分布,发现模拟计算结果与实验数据基本一致。5、实验研究了硅基石墨烯场效应管的光激发掺杂效应,发现其在室温下从可见光(450nm)到近红外波段(1064 nm)均具有非常高的光电响应度,分别为500 A/W和4 A/W。研究表明是Si/SiO2基底对光吸收的photogating效应,电场的形成主要是因为在Si/SiO2界面处能带的弯曲使得Si中光诱导的电子空穴对快速分离所导致的。光电流与激光功率呈现的是一种非线性关系,在激光功率较低时,随着激光功率的增加,光电流迅速增加,当激光功率增加到一定程度时,光电流不再增加,而是趋于饱和。
其他文献
日益复杂的世界局势对飞行器的性能及任务形式提出了新的需求,基于各国在高超声速飞行器攻防领域的大量投入和激烈角逐,为了在竞争中争取有利地位,势必需要新思想新概念的引入来促进相关领域的研究进展。智能变形飞行器概念及高超声速飞行器概念作为重要非对称手段得到了世界各国的重点关注,在此背景下,本文主要针对变形飞行器技术和高超声速飞行器技术的交叉融合进行了初步的探讨,系统地开展了变形技术应用于高超声速飞行器的
电动力绳系是一种新概念航天器,其通过与空间地磁场和电离层的相互作用来实现无燃料推进,在空间碎片清除、废弃卫星降轨、卫星编队飞行等空间任务中具有广泛的应用前景。本文以轨道上运行的电动力绳系为研究对象,对电动力绳系的摆动动力学与控制、轨道动力学特性等内容进行研究,主要研究成果如下:研究了非倾斜偶极子模型下电动力绳系的摆动动力学特性。基于电动力绳系为张紧状态的假设,建立了电动力绳系的哑铃模型,推导了该模
高层大气和重力场信息是空间科学与地球物理重要的基础信息,亦是国家重要的战略信息,对气候变化监测、卫星在轨运行、远程火箭落点精度等涉及到国计民生,国防武器装备等方面的建设具有重要作用。而利用卫星测量手段开展对地观测具有全天时、全天候、全覆盖的优势,已逐渐成为高层大气和重力场探测的最有效手段。随着近年来一系列高层大气探测卫星、重力卫星的成功发射,极大的提升了高层大气和重力场测量精度,并积累了丰富的在轨
精密机械结构是高精尖装备的重要组成部分,装配是结构最终的集成环节。零部件之间的装配结合面是实际接触区域,对精密机械结构的功能和性能影响较大。将具备分形特性的装配结合面称为分形结合面,结合面上的微凸体会产生弹簧阻尼效应,是影响整机动力学性能的关键因素。为了从理论上研究装配工艺对精密机械结构动力学性能的影响规律,提出将分形结合面作为研究切入点,建立分形结合面接触模型;提出机加工表面分形参数求解优化算法
碳纤维增强聚合物基复合材料(CFRP)是一类具有优异力学性能的复合材料,其在航空航天、风电、交通运输及体育器材等领域有着十分广泛的应用。随着CFRP的大量生产及使用,在生产过程中形成的大量CFRP边角料以及服役结束后形成的废料将不可避免地造成环境的污染以及对资源的浪费,因此对CFRP废弃物的处理已成为了CFRP产业链可持续发展亟需解决的重要问题之一。目前,CFRP废弃物的再生利用研究还未能真正实现
碳纤维增强树脂基复合材料具有比强度高、比模量高、疲劳性能好等特性,是实现汽车等结构轻量化的优选材料之一。快速成型技术是碳纤维增强树脂基复合材料大规模应用于汽车结构的客观要求和必然趋势。然而快速成型技术使得复合材料的成型时间短、物理和化学反应急剧,影响着复合材料纤维/基体界面的物理、化学和力学效应,这些效应耦合在一起影响着界面的形成和结构,进而影响着复合材料的界面性能以及湿热老化性能等使用性能。本文
在高超声速飞行器/发动机一体化背景下,进气道设计实质上是在一系列几何约束和气动性能约束条件下进行的。本文针对这一需求,提出了强约束条件下的内转进气道优化设计方法,该方法将流线追踪技术与参数化方法、优化方法相结合,实现了在控制进气道几何参数的同时完成进气道气动性能优化。采用该方法,针对轴对称飞行器形成了不同形式的进气布局设计,对各方案的气动性能进行了分析,并研究了进气布局对吸气式轴对称飞行器气动特性
本文针对高海况天气系统下最为常见的热带气旋,通过将锚系潜标观测的现场海流数据、Argo浮标观测的温盐、生化数据以及卫星遥感数据相结合,研究了由热带气旋引起的中国南海和阿拉伯海的上层海洋响应特征。同时对其过境期间海水的温盐结构和叶绿素浓度的变化特征进行了研究。通过实例分析发现:热带气旋的过境可诱发强烈的垂向混合和埃克曼抽吸,引发明显的上升流现象。这改变了海洋内部的水体分布特征,导致其移动路径附近出现
高超声速巡航飞行器采用吸气式推进方式,可以Ma≥5的速度在临近空间大气内巡航。其高速度能够显著缩短飞行时间,有利于执行时间敏感的远程飞行任务,如紧急运输、高速客机和快速全球打击。由于其采用的吸气式推进系统可以提供远高于火箭发动机的推进效率,该类飞行器理论上具有更大的航程/载荷率潜力,可以作为一种通用的航空运载平台,亦可支撑快速便捷的单/两级入轨。此外,在临近空间内高速飞行的能力对防空提出了严峻的挑
为满足高马赫数飞行器对耐高温、低介电和抗烧蚀天线罩(窗)用透波材料的应用需求,本文以氮化硅(Si3N4)纤维为增强体,以硅溶胶为氧化硅(SiO2)基体先驱体,通过溶胶-凝胶工艺制备了单向氮化硅纤维增强氧化硅(UD Si3N4f/SiO2)复合材料和浅交弯连层连结构氮化硅纤维增强氧化硅(2.5D Si3N4f/SiO2)复合材料。开展了Si3N4纤维的耐温性能、硅溶胶的无机化过程以及氧化硅基体的强韧