论文部分内容阅读
Ni-Cr-W-Al-Ti-MoS2 self-lubricating composites were prepared through the powder metallurgy (P/M) method. Their friction properties were investigated by a pin-on-disk tribometer in the range from the room temperature to 600 ℃. Alumina, silicon nitride and nickel-iron-sulfide alloys were selected as the counterface materials. Results indicate that the lowest friction coefficients under 0.22 can be obtained at 600 ℃ when rubbed against alumina. When rubbed against nickel-iron-sulfide alloys, are presented the lowest wear rates in the magnitude of 10-6 mm3/N·m, one order of magnitude lower than those when rubbed against ceramics. In the case of three rubbing pairs, the wear rates of the composite containing MoS2 present themselves inversely proportional to friction coefficients. With alumina ceramics used as a counterface, transfer films and glaze layers will form on the contact surface playing a main role in lubrication at high temperatures. However, when silicon nitride and nickel-iron-sulfide alloy are used, the lubricating transfer films appear not to be promi-nent.
Ni-Cr-W-Al-Ti-MoS2 self-lubricating composites were prepared through the powder metallurgy (P / M) method. Their friction properties were investigated by a pin-on-disk tribometer in the range from the room temperature to 600 ℃. Alumina, silicon nitride and nickel-iron-sulfide alloys were selected as the counterface materials. Results that the lowest friction coefficients under 0.22 can be obtained at 600 ℃ when rubbed against alumina. When rubbed against nickel-iron-sulfide alloys, are presented the lowest wear rates in the magnitude of 10-6 mm3 / N · m, one order of magnitude lower than those when rubbed against ceramics. In the case of three rubbing pairs, the wear rates of the composite containing MoS2 present themselves inversely With alumina ceramics used as a counterface, transfer films and glaze layers will form on the contact surface playing a major role in lubrication at high temperatures. However, when silicon nitride and nickel-i ron-sulfide alloy are used, the lubricating transfer films appear not to be promi-nent.