超分子前驱体对g-C3N4/BiOI光催化剂结构及其催化性能的影响

来源 :工业催化 | 被引量 : 0次 | 上传用户:dsfsfsg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光催化技术在解决能源与环境问题方面具有广阔前景,关键在于开发具有可见光响应的催化剂。石墨相氮化碳(g-C 3 N 4)与碘氧化铋(BiOI)均具有可见光响应,两者可形成异质结复合物,提升光催化性能。以三聚氰胺-三聚氰酸超分子作为合成g-C 3 N 4的原料,通过高温焙烧不同加入量的超分子与BiOI形成的前驱体,制备不同形貌结构的g-C 3 N 4/BiOI催化剂。采用XRD、红外光谱以及SEM对催化剂进行结构与形貌的表征,采用双酚A探究不同结构的g-C 3 N 4/BiOI催化剂的光催化性能。结果表明,当
其他文献
本文通过介绍建筑电气技术与智能建筑的概念,分析智能建筑优势、建筑电气技术在智能建筑中的作用、建筑电气技术在智能建筑中的实际应用等要点,探讨建筑电气技术在智能建筑设计领域的发展趋势,以促进我国建筑行业快速稳定发展。
本文基于风景园林植物应用概述,结合教学目标、学情分析和教学难点,有针对性地探讨认知植物基本知识、认知植物生态习性和生态适应性、认知园林植物特性营建可持续植物景观3
针对脱硫加氢精制催化剂生产中节能降耗增效研发的热风循环回用网带窑由单元式双箱体、热风内循环结构和热风回用系统等结构组成。该焙烧炉采取单点进出风、热风百分之百循环回用,大幅度提高气剂比,且循环热风采用和物料逆流接触、对流加热的方式,保证传质传热效果。工业应用结果表明,网带窑具有高产节能作用,产品物化性能稳定,产能提高2倍,每吨产品焙烧电耗与传统网带窑相比下降60.7%。
氨选择性催化还原(NH3-SCR)是有效的烟气脱硝技术之一,技术核心是脱硝催化剂。近年来,锰系脱硝催化剂在低温SCR反应中优良的催化活性得到国内外学者的关注。介绍锰系低温脱硝催化剂失活原因及再生方法。重点针对锰系低温脱硝催化剂的化学中毒详细介绍了失活原因及失活机理,包括SO2、H2O、碱(土)金属、重金属As、Zn、Pb及非金属Cl、P、F等。根据不同化学失活原因提出了相应的再生方法,比较不同再生方法的再生效果。最后对未来锰系低温脱硝催化剂
介绍生物质原料通过加氢裂化路线实现高附加值利用的基本原理与研究进展,分析国内研究机构从催化剂制备、载体改性以及工艺条件优选等方面所取得的研究成果。目前采用生物质原料加氢裂化生产高附加值燃料技术可实现生物质原料100%转化,高附加值生物航空煤油收率超过60%。论证该技术路线的可行性与重要战略意义,同时也阐述该技术存在的不足,为技术的进一步发展与革新指明方向。
主要研究1,8-二氮杂二环十一碳-7-烯(DBU)催化碳酸乙烯酯和甲醇酯交换反应合成碳酸二甲酯的反应动力学。首先假设碳酸二甲酯的反应机理,在此基础上建立动力学模型,得到相应的动力学方程。通过实验数据处理,线性回归计算得到动力学方程的未知参数,最终得到反应速率r=4.2889e-15763/RT_(c EC c MEOH)-49811e-31308/RT_(c DMC c EC/c MEOH),其中正反应活化能E+a=15763 J·mol-1
以硝酸锌、硝酸铝为原料,尿素为沉淀剂,采用均相沉淀技术,在铝基体表面原位生长Zn2+-Al3+-LDHs薄膜。采用XRD、FT-IR、SEM和EDS等对铝片表面构建的Zn2+-Al3+-LDHs的成分和结构进行分析表征,研究表明,Zn2+-Al3+-LDHs膜均匀生长在铝基体表面,具有典型的LDHs材料的层状结构。研究了Zn2+-Al3+
以预处理后的活性炭(AC)为原料,三氧化二铁(Fe2O3)为活性组分,借助浸渍煅烧法制备活性炭负载三氧化二铁(AC@Fe2O3)催化剂.采用傅立叶变换红外光谱仪(FT-IR)、X射线衍射仪(XRD
应对炼化转型需求,大庆石化公司提出多产重石脑油兼产喷气燃料的生产方案,对1.2 Mt·a-1加氢裂化装置进行技术改造。采用中国石油石油化工研究院自主开发的PHT-01预处理催化剂和PHC-05加氢裂化催化剂,选用单段一次通过工艺流程。改造后装置运行稳定,结果表明,重石脑油收率45.69%,航煤收率22.95%,C+5液体收率100.3%。与改造前相比,化工原料收率提高32.48%,航煤烟点提高2.4个单位,其性质符合3号喷气燃料指标要求;尾油BMCI值相比上周期降低4.2个单位,是优
催化裂化反应为吸热反应,催化剂再生反应为放热反应,再生烧焦放出热量与反应吸热以及原料升温、热损失达到平衡状态,装置才能平稳运行。通过对某炼油厂1.2 Mt·a-1催化裂化装置反应-再生系统热平衡进行分析,表明催化剂循环流化与外取热运行工况不稳定是造成反应再生系统热量难平衡的主要原因。提出对反应-再生器内构件、外取热等技术进行改造和优化。改造后,催化剂单耗降低0.24 kg·t-1,蒸气产量增加30 t·h-1,汽柴液总收率提高0.93%,实