论文部分内容阅读
均值漂移算法是一种高效的模式匹配算法.在传统的均值漂移方法基础上,本文针对运动范围较大的目标跟踪问题进行研究,提出一种基于 Bhattacharyya 系数的由粗到精的核匹配搜索方法.该算法能够有效利用相似性度量函数 Bhattacharyya 系数在实现对运动目标初始的粗定位情况下,利用均值漂移方法进行迭代求解局部最优值,从而实现目标的精定位,成功实现大范围运动目标的跟踪.实验结果验证该算法在跟踪精度和速度上均优于传统方法.