论文部分内容阅读
多目标聚类过程中会产生一些明显不合理的解,影响最终划分结果以及聚类类数的判断。为此,提出一种基于局部集成和克隆选择的多目标聚类算法。在聚类过程中周期性的将聚类解集划分为若干邻域,对每个邻域进行局部集成操作,剔除各个类数下的不合理划分;利用克隆选择算法的思想构建3种变异算子,推动种群的进化,分别具有增大或减小当前解的聚类类数、调整当前解样本划分情况的功能。3组人工数据集以及3组UCI数据集的实验结果表明,该算法能够得到优于对比算法的聚类结果,准确判断出合理的聚类类数,判断类数的准确率可提高0%~46.