论文部分内容阅读
设计并实现了单用户、数据速率2.5 Gbit/s的码位重叠快跳频光码分多址(SO-FFH OCDMA)实验系统。采用波长数为7和码长为4的单重合码,在数据速率2.5 Gbit/s时设计和制作了基于光纤布拉格光栅(FBG)的光编码/解码器,并测试了光编码器和光解码器的频谱图。脉冲发生器产生2.5 Gbit/s的非归零(NRZ)脉冲信号,外调制放大自发辐射(ASE)宽带光源后,通过光环行器进入光编码器进行光信号的扩频编码。编码后的光信号经掺铒光纤放大器(EDFA)放大后,输入到光解码器进行扩频解码,并通过2.5 Gbit/s接收模块转换为电信号。从解码信号的波形看,在用户数据速率为2.5 Gbit/s时,该系统能够正确解码用户的数据信息。实验结果表明,相对于传统的快跳频光码分多址系统,码位重叠快跳频光码分多址可大大提高用户的数据速率。
A single user, SO-FFH OCDMA experimental system with a data rate of 2.5 Gbit / s is designed and implemented. An optical coder / decoder based on Fiber Bragg Grating (FBG) was designed and fabricated at a data rate of 2.5 Gbit / s using a single coincidence code with a wavelength of 7 and a code length of 4. The optical encoder and optical decoder Spectrum. The pulse generator generates a non-return-to-zero (NRZ) pulse signal of 2.5 Gbit / s. After externally modulating amplified spontaneous emission (ASE) broadband light source, it enters the optical encoder through the optical circulator to perform optical signal spreading coding. The encoded optical signal is amplified by an erbium-doped fiber amplifier (EDFA), input to an optical decoder for spread spectrum decoding, and converted to an electrical signal by a 2.5 Gbit / s receiver module. Judging from the waveform of the decoded signal, the system can correctly decode the user’s data information when the user data rate is 2.5 Gbit / s. Experimental results show that, compared with the traditional FAST optical code division multiple access system, the code-bit overlap fast-hopping optical code division multiple access can greatly improve the user’s data rate.