论文部分内容阅读
超高强钢不仅在航空航天、交通运输、安全防护、先进核能以及国防装备等国民经济重要领域发挥着重要作用,而且也是未来轻型化结构设计和先进能源应用的关键材料。然而现行超高强度钢的强化始终基于传统的半共格析出产生强共格畸变的学术思路,导致超高强度钢中析出相数量有限且分布不均匀,在承载时易萌生裂纹,既降低了塑韧性又影响服役安全性。此外,昂贵的制备成本也限制了其实际应用,成为困扰高端钢铁工业发展的难题。本文针对低成本高性能化的研究目标,提出通过低错配低能界面设计超高密度共格析出以及利用析出相强的有序效应实现高剪切应力的学术思想。使用低成本且轻质的Al代替传统超强钢中重要元素Co、Ti等,通过调整Al、Mo含量等最小化两相理论晶格错配度,并采取简单的热处理制度制备了体积密度大于1024m-3、尺寸为2~4纳米的B2结构Ni(Al,Fe)增强的成分为Fe-18Ni3Al4.5Mo0.8Nb0.08C的新型马氏体时效钢。该纳米析出在产生显著强化效果的同时有效提高了马氏体时效钢的均匀塑性变形能力,从而使其获得了优异的力学性能,其中抗拉强度超过2200 MPa,延伸率超过8%。优化Fe-Ni-Al基马氏体钢中纳米第二相的析出行为。发现Mo极低的扩散速率以及析出的高驱动力作用下,纳米析出的形核过程为局部低含量溶质元素的剧烈重排,低Al核心使得形核时两相的弹性畸变几乎为零,整体上降低形核势垒,从而促进超高密度析出。第二相长大亦为局域化行为,最小化的粗化驱动力和低扩散速率抑制了不稳定高密纳米析出的局部粗化行为,使得组织热稳定性高,在长时时效后新型马氏体钢仍具有良好的力学性能。在获得均匀弥散组织的基础上,研究了共格有序增强马氏体钢的塑性变形机制。发现在强有序效应钉扎下,大量可动位错在高应力下滑移切过析出后能够击穿位错网络及小角度晶界,产生剧烈的位错增殖并抑制显著平面滑移带的产生,提高了共格有序析出增强马氏体钢的塑性。本论文不仅提出了低错配低能界面实现强有序析出的高强合金设计思想,而且为塑韧化“共格有序析出”增强合金以及解决同类合金具有高脆性趋向的共性问题提供了新的思路。