基于朗肯循环的海洋温差能发电系统研究及仿真

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:wenshicai2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
化石能源的大量使用给生态环境带来严重的负担,使用清洁替代能源改善能源结构,同时减少污染物和温室气体排放,是未来能源利用的发展方向,已经受到广泛的关注。海洋温差能发电(Ocean Thermal Energy Conversion,OTEC)利用海洋表面温海水作为热源并以深海冷海水作为冷源,使用低沸点工质基于特定热力循环输出电力,不耗费任何燃料并且不会造成污染,因而已成为科学研究的热点。本文针对OTEC发电系统,在充分调研现场设备的基础上,通过理论分析并结合现场工作经验,基于Delphi开发了闭式朗肯循环OTEC仿真平台,以实现不同工况、不同工质、不同装机容量系统的模拟研究,并利用所得仿真平台完成了如下具体工作:首先,本文分析了9种不同工质在OTEC系统中的特性,对比了工质的环保性和安全性,利用仿真平台计算典型工况下的工质流量、换热器热负荷、系统输出功等参数,比较了不同工质的做功能力,分析了工质热物性对系统(火用)损的影响,综合工质环保性、安全性、系统技术匹配度、做功能力等因素,最终完成了工质优选。其次,利用所建立的OTEC仿真平台,本文探究了单一变量工质蒸发温度和冷凝温度对系统参数的影响规律,并以系统输出功和系统热效率为优化目标完成了工质蒸发温度和冷凝温度的优化。在典型工况下,优化结果表明当工质蒸发温度和冷凝温度分别为20.6℃和11.1℃时,系统输出功达最大值6136.57 k W,然后分析了装机容量对于OTEC系统的影响。最后,本文论述了闭式朗肯循环OTEC系统包括海水管道、换热器、透平、海水泵在内的主要设备,对设备材质和型式都进行了分析。
其他文献
开发环境友好且工艺简单的缓释肥料是当今农业与化工领域的研究热点,也是环境友好聚合物的一个新兴应用方向。本研究提出了以高分子/尿素包合物作为缓释肥料的新设计思路,采用一步法制备了可降解聚酯/尿素包合物颗粒。研究了不同包合物体系的尿素缓释行为和结构演化过程,揭示了包合物的尿素缓释机制,建立了高分子链结晶能力与包合物缓释性能间的关系,并评价了这一新型缓释肥料对植物生长的促进效果。主要研究内容与结论如下:
工业无线网络(Industrial Wireless Networks,IWNs)主要实现对工业生产数据的采集、处理和传输,目前正面临着低功耗、低时延等严苛的要求。非正交多址接入技术(Non-Orthogonal Multiple Access,NOMA)在单一资源上叠加多个用户信息,接收机使用干扰消除算法进行多用户检测与分离,可以实现多用户的并行接入。本文面向功率域非正交多址接入技术(Power
气体扩散层是质子交换膜燃料电池中非常重要的组成部分,作为反应气与生成水的重要流通通道,其内部结构相关性质对流体流动研究非常重要,已成为众多研究者研究的热点。本文利用随机结构重建方法和XCT断层扫描重建方法,获得气体扩散层结构的数学模型,并研究了其空隙率、空隙分布、几何迂曲度、水力学迂曲度等孔隙性质。采用格子Boltzmann方法研究了其内部气体和液体的流动状态,并与孔隙性质相关联。研究结果表明,空
步态识别通过分析行人行走序列中的姿态与动作来判断身份。较之于其它生物特征,步态具有不受图像分辨率低和距离影响、无需目标主动参与,难以掩饰等优点。然而,传统步态识别方法的具体应用效果依旧会受到行人的衣着、背包等外部因素的影响。针对这一问题,本文将基于轮廓序列和基于骨架序列的这两类步态识别方法进行结合,并对其实现方法和具体应用进行了研究和分析。首先,针对使用传统背景差分法获取的步态轮廓图在质量、实用性
目前,油田开发领域最经济、最高效、最有潜力的技术就是分层精细注水。分层注水能有效控制采油井油水比例,提高油田采收率,使得油田高产量的采油,保持油田稳定的产量,从而提高油田经济效益。但随着分层注水技术的发展,油田分层注水井的数量逐年增多,导致注水井测调的工作量加大。同时,由于测调间隔周期长,不能长期保持较高注水合格率。因此,本文提出基于管柱压力波的注水井双向无线通信方法。数据传输过程不需要停止注水,
锂离子电池以其高比能量密度、长循环周期和环境友好性等优势在电动汽车(EVs或PHEVs)和其它储能领域得到宽泛应用。内阻是决定锂电池的功率性能和使用寿命的关键因素,甚至成为电池电化学性能发挥的限制因素。高负载石墨负极极片存在锂离子传输路径长,有效扩散系数低的问题。本文以降低锂电池的负极内阻为研究目标,分别从提高电子传导和Li+传输速率角度出发;研究了集流体与涂层间的界面对电池内阻的影响;并对极片的
近些年来,我国大力支持和开发海洋石油天然气工程,尤其是水下石油天然气生产系统的建立。在渤海、南海等海域,水下生产系统被投入使用,加大了我国海洋石油天然气资源的开采,为解决国家能源问题提供了帮助。在水下石油天然气生产系统中,水下电连接器承担了重要的角色,连接水下生产系统中的各个模块,传递光电信号并为各个模块提供电能。但水下电连接器技术一直被国外垄断,我国的发展水平远远落后于世界水平,现存的各水下生产
锂离子电池作为重要的储能器件之一,研发高容量的可充电锂离子电池对于推动电动汽车和便携式电子设备的快速发展至关重要,而开发高容量锂电池所面临的最大难题是市面现存的最先进的正极和负极材料的比容量均有限。对于负极材料而言,Si具有比传统石墨负极(~372 m Ah g-1)更高的容量(Li4.4Si~4200 m Ah g-1),并且兼具操作安全、储量丰富、环境友好等优点,因而被认为是最具前景的下一代负
直接空冷技术因其优越的节水性能而被广泛应用于富煤贫水地区燃煤电厂中。虽然直接空冷机组整机具有占地空间小、性能好的特点,但是机组中的空冷岛却容易受到环境因素的影响。在冬季较为寒冷的地区,较低的温度通常会使凝汽器的换热效率降低并且引发安全事故。同时空气泄漏也会严重影响凝汽器的工作性能。本文以单根空冷翅片管为主要研究对象,运用某2×350MW直接空冷机组的实际运行数据,对空冷翅片管的空气侧与蒸汽侧的换热
发展冷热电联供技术不仅可以实现能源的梯级高效利用,还可以增强对环境的保护。所以,加强对冷热电联供技术的研究、发展具有重要的现实意义,加大对冷热电联供技术的推广与实施也势在必行。虽然目前已经存在针对基于冷热电联供技术的集成方案及运行策略的优化研究,但是针对不同的工程,具有不同的最佳集成方案与运行策略。因此,本文根据所研究的工程需求进行集成方案设计与运行策略优化。论文首先通过对冷热电联供系统中的发电系