【摘 要】
:
双相不锈钢的显微组织由奥氏体相和铁素体相组成,它兼具各自单相不锈钢的优点,有着优异的力学和化学性能,被广泛应用于工况恶劣的腐蚀环境中。然而,由于奥氏体相和铁素体相的晶体结构不同,在热加工时的变形机制、软化方式、变形抗力和塑性均存在差异,容易导致组织变形不协调,热加工性能较差,加工窗口相对较窄。工艺选择不当很容易产生缺陷,严重的会导致热轧边裂和热锻表面开裂。这些缺点阻碍了双相不锈钢的应用和发展。系统
论文部分内容阅读
双相不锈钢的显微组织由奥氏体相和铁素体相组成,它兼具各自单相不锈钢的优点,有着优异的力学和化学性能,被广泛应用于工况恶劣的腐蚀环境中。然而,由于奥氏体相和铁素体相的晶体结构不同,在热加工时的变形机制、软化方式、变形抗力和塑性均存在差异,容易导致组织变形不协调,热加工性能较差,加工窗口相对较窄。工艺选择不当很容易产生缺陷,严重的会导致热轧边裂和热锻表面开裂。这些缺点阻碍了双相不锈钢的应用和发展。系统研究双相不锈钢的热变形开裂机制,并阐明其影响因素,对提高双相不锈钢的热加工工艺性能具有帮助。本文以典型的双相不锈钢AISI 2205为研究对象,进行了不同变形条件的热拉伸实验,获得了热变形过程的流变曲线;通过测量试样断面收缩率,分析了变形条件与热塑性的关系;通过扫描电子显微镜和背散射电子衍射分析对裂纹萌生位置和扩展路径进行了观察,获得了变形组织的晶体学信息;根据双相不锈钢的高温组织形貌建立了有限元模型,进行了数值模拟并与物理实验结果进行了对比。主要研究工作和结论如下:(1)应变速率一定时,试样在1100℃变形时的流变应力均高于1200℃时的流变应力,两组温度的变形试样均是0.5 s-1应变速率变形时的断面收缩率最高,热塑性最好。(2)两组变形温度试样变形至0.4真应变时,从0.5 s-1到0.005 s-1,应变速率越低裂纹数量越多,相同应变速率时1200℃的变形试样裂纹数量略少,但裂纹张开面积更大。裂纹大部分在相界萌生并沿着相界扩展,少部分萌生并扩展于铁素体内部,奥氏体晶界没有裂纹萌生和扩展。(3)0.05 s-1和0.005 s-1应变速率变形时热塑性较差是由于铁素体相的动态回复程度高,并且奥氏体相的动态再结晶受到抑制,两相的变形抗力差异很大;当应变速率提高到0.5 s-1时,铁素体相的动态回复受到抑制而“硬化”,奥氏体相的动态再结晶程度更高而“软化”,两相的硬度和GOS差异逐渐缩小,变形协调性得到改善,因而塑性较好。(4)建立了基于Johnson-Cook形式的奥氏体和铁素体高温变形本构方程。通过用多项式描述本构方程硬化部分并考虑应变速率和变形温度的耦合影响,对本构方程进行了改进。将改进的本构方程编写成用户硬化子程序,成功嵌入了ABAQUS有限元分析软件,调用良好。(5)为奥氏体和铁素体相选择韧性损伤准则,为两相相界选择了内聚力损伤模型。根据数值模拟结果确定了损伤参数,代入ABAQUS中进行了有限元模拟。模拟结果与物理实验观察结果吻合度较高,验证了本构模型和损伤参数的合理性。
其他文献
纯铜具有优异的导电、导热等性能在众多科学领域被广泛使用,但由于硬度低、强度差等缺陷会制约其进一步的应用,因此通过表面改性技术向纯铜表面加入其他金属元素从而改善其性能变得尤为重要。针对铜和镍无限互溶特性以及激光熔覆具有高能量密度和温度骤升骤降特点,能有效解决该问题。但激光熔覆过程中的温度以及残余应力对试件加工性能影响极大,为了研究多层多道激光熔覆中熔覆层及基体的温度与残余应力分布以及镍含量对熔覆层性
近年来,TRIP双相不锈钢以Mn-N代Ni不仅降低了成本,而且其在变形过程中可通过马氏体相变实现TRIP效应,提高了材料的塑性变形能力,其在轨道交通车体生产领域具有巨大的应用潜力。双相不锈钢在成形复杂结构件或者已成形的结构件在服役过程中会承受循环载荷,局部位置会经历循环弹塑性变形,材料在循环载荷下会表现出与单调加载明显不同的循环变形特性,而TRIP双相不锈钢在变形过程中还会产生马氏体相变,使得其循
激光表面淬火是一种利用高能密度激光束扫描金属工件,使其表面瞬间形成奥氏体,随后在快速冷却过程中获得含有细小马氏体组织硬化层的热处理技术。在工件体积小、拆卸难度大、受热易变形等复杂工况下具有传统淬火技术无法替代的优势。本文重点从两个方面探究了激光表面淬火过程中不同加工参数和冷却方式,对W6Mo5Cr4V2高速钢残余应力场和温度场分布以及微观晶粒尺寸的影响规律。首先,应用Procast软件模拟均匀分布
铬涂层是一种综合性能优异的防腐涂层,即使在潮湿的环境中也不会被腐蚀。此外,铬涂层具有良好的装饰性能、机械性能和耐热性,十分适合用于汽车轮毂。电镀技术被认为是涂覆机械零件的最常见方法之一,但是对环境和人体都有很大危害,磁控溅射技术是一种很有吸引力的绿色环保的涂层技术,它可以通过简单的工艺控制靶材和涂层的成分,并且具有良好的再现性,这适合于涂层的大规模生产。本文使用磁控溅射技术沉积得到CrNi和CrC
高氮奥氏体不锈钢是以氮和锰替代了传统AISI300系不锈钢中昂贵的镍,不仅具有优异的力学性能,而且还有着良好的生物相容性和价格优势。这类钢在医疗、汽车、化工等领域应用前景十分广阔。金属零部件最终的各种表面加工工艺,例如切削加工、抛丸、滚压等,都会引入应变层,产生加工硬化和残余应力。这些都会影响金属的力学和化学性能。而这些表面加工工艺对高氮奥氏体不锈钢有什么影响,目前尚不明确。本文以典型的高氮奥氏体
轧机在国内担负着近10亿吨钢材生产任务。工程界结合其重载、高速和高精度特性对振动问题进行了长期研究,取得了诸多关于致振机理和振动控制的研究成果。然而,轧机作为复杂机械系统,实际生产中表现出的非线性振动现象仍不断凸显,如颤振成为长期困扰轧机运行的幽灵般难题,导致轧机规定能力大幅降低。其中,冷轧板带在轧制过程中表出现的非线性振动现象,是研究轧制系统的振动问题不可或缺的组成部分。本文基于弹性理论及哈密顿
随着经济和技术的快速发展,人们从未停下探索海洋的脚步。超级奥氏体不锈钢具有优异的耐腐蚀性能和良好的力学性能,在海洋资源开发中受到了广泛应用,其中,在一些海洋装备的运动系统中服役时,如船舶的动力装置、海水液压传动装置和水下作业机器臂等,腐蚀与磨损是不可避免的。因此,研究材料在海洋环境中的腐蚀磨损行为至关重要。本文以两种超级奥氏体不锈钢为研究对象,高Mn含量并加入Ce元素的标记为654-1,低Mn含量
铁素体马氏体钢在强辐照环境下具有优异的几何稳定性,耐腐蚀性能以及抗辐照肿胀等特性,可以作为核反应堆的重要候选材料之一。铁素体马氏体钢中含有的主要元素为Fe和Cr,还有少量的Si、C、N等元素。同时FeCr合金又是重要的不锈钢材料,其应用不仅局限于核电站的建设,更是涉及到日常生活的方方面面。FeCr合金通常具有成分无序性,以及复杂的磁性结构,并且材料性能与腐蚀性的研究还主要依赖于实验方法,这使得其研
在众多表面处理工艺中,喷丸表面处理技术非常成熟,可以使金属表面物理性能得到提高。从力学性质来看,金属得到强化的原因是金属产生了残余应力。从微观角度来看,主要是晶粒尺寸、位错、相变和晶胞等变化使得金属强化。本文主要是对喷丸处理中各种因素对残余应力和晶粒尺寸的影响,以及残余应力与晶粒尺寸的关系进行研究。主要工作如下:为了研究喷丸表面处理强化的内在物理机制,建立了弹丸冲击力学模型。使用DYNA软件进行研
近年来电子工业的发展十分迅速,各类电子电器产品朝着轻、薄、小、快方向发展,也因此对压延铜箔的性能提出了更高的要求。普通多晶铜箔在导电、散热和信号传输等性能上越来越达不到锂电池和微型电子等行业要求。而单晶铜的塑性、导电性和耐弯折性等多项性能优异,为了研制高质量高性能的压延铜箔,非常有必要研究单晶铜轧制工艺。本文基于热型连铸单晶铜和普通多晶铜,利用拉伸、显微硬度和金相实验研究了单晶铜和多晶铜轧制、回复