【摘 要】
:
移动边缘计算通过将云数据中心的计算、储存能力下沉至网络边缘,在网络边缘为用户提供高带宽、低延迟的服务,满足了日益增长的移动设备和计算日益密集任务的迫切需求。本文研究了移动边缘计算中,基于用户移动场景和基于任务依赖关系的协同任务调度问题,构建了移动设备与MEC服务器之间、MEC服务器与MEC服务器之间的两层协同任务调度系统模型,该模型包含了移动设备、MEC服务器等实体模型、移动设备与基站的无线通信模
论文部分内容阅读
移动边缘计算通过将云数据中心的计算、储存能力下沉至网络边缘,在网络边缘为用户提供高带宽、低延迟的服务,满足了日益增长的移动设备和计算日益密集任务的迫切需求。本文研究了移动边缘计算中,基于用户移动场景和基于任务依赖关系的协同任务调度问题,构建了移动设备与MEC服务器之间、MEC服务器与MEC服务器之间的两层协同任务调度系统模型,该模型包含了移动设备、MEC服务器等实体模型、移动设备与基站的无线通信模型、本地计算和边缘计算两种计算方式模型和任务处理过程中的时间、能耗模型。针对基于用户移动场景的协同任务调度问题,本文以保证系统服务质量前提下的最小化任务平均执行时间为优化目标,提出了一个基于用户移动性感知的启发式优化算法(MAHO算法)。MAHO算法基于已知的用户移动轨迹构建了用户移动性模型,并对无线通信模型和任务处理过程中的时间、能耗模型做出了适当调整。在调度策略上,MAHO算法优先选择紧迫度较高的任务进行调度,根据MEC服务器的资源匹配度大小,并结合两个特殊场景(本地计算场景和接入服务器计算场景),以决定任务在本地计算还是边缘计算以及边缘计算时在哪一个MEC服务器上计算。针对基于任务依赖关系的协同任务调度问题,本文同样以保证系统服务质量前提下的最小化任务平均执行时间为优化目标,提出了一个基于任务依赖性感知的启发式优化算法(DAHO算法)。DAHO算法在MAHO算法的基础上,加入任务依赖性模型以保证任务执行时的依赖关系限制。在调度策略上,DAHO算法优先选择最迟调度时间较小且符合依赖关系限制的任务进行调度,同MAHO算法一样,根据MEC服务器的资源匹配度大小,结合两个特殊场景,以决定任务的调度决策。实验环节,本文通过仿真实验结合真实平台实验对提出的MAHO算法和DAHO算法进行了算法性能验证,仿真实验结果和真实实验结果均表明,本文所提的MAHO算法和DAHO算法相对于已有的TAS算法和MAMTS算法,在任务的平均执行时间和超时率两方面具有较为明显的优势。
其他文献
随着信息技术水平的提升和现代工业的飞速发展,机械设备逐渐朝着集成化、电气化和自动化的发展方向迈进,其设备结构也越来越精细化和复杂化。机械旋转部件作为机械设备中的关键部件,一旦发生故障将会导致整个设备无法运转,轻则增加停机时间,重则引起大量经济损失甚至人员伤亡。因此,对其开展状态检测和故障诊断技术研究,可以维护机械设备的工业生产安全,具有重要的应用价值和潜在的经济效益。目前,机械旋转部件故障诊断工作
主动跟踪系统能够主动地、有目的地调整相机参数实现目标跟踪,在大范围智能监控、大尺度移动目标跟踪领域应用广泛,如何获得目标参数,在具体应用场景中实现优化控制仍是一大难点。利用科技手段辅助体育训练正成为我国体育科研工作的热点和趋势,尤其冬季体育项目,亟需发挥科技力量提升训练质量,实现跨越式发展。短道速滑是典型的滑行技术与比赛战术高度结合的竞技项目,对训练或比赛全过程视频记录是进行训练质量评估和比赛策略
垃圾回收与重新处理,始终是人类社会一个不可忽略的问题。尤其是进入21世纪以来,人类生产力飞速提升的同时,垃圾数量迅速增长。妥善的处理垃圾,可以高效的利用资源,减少污染,甚至再次创造效益。而且垃圾处理工作环境一般比较恶劣,有时候运送来的垃圾中掺杂一些的玻璃废渣,废旧电池等,这会使垃圾分拣工作者有一定受伤的风险。因此,建立全自动的智能垃圾分拣系统就显得十分重要。本文设计了一套智能垃圾自动分拣系统,重点
数控机床和基础制造装备作为装备制造业的“工作母机”,是“中国制造2025”十大战略必争领域之一。主轴系统作为数控机床的“心脏”,其回转精度与健康状态直接影响数控机床的产品质量及加工效率,同时由于主轴系统结构复杂且易受生产环境的干扰,导致加工精度难以保证且故障频发,不仅造成巨大经济损失同时威胁人身安全。因此,如何保证数控机床的回转精度及高稳定性是亟需解决的问题。针对以上问题,本文开展数控机床主轴回转
高光谱遥感图像(Hyperspectral Image,HSI)中的对地物分类问题是高光谱遥感图像处理领域的重要课题之一。在高光谱图像分类问题中,训练样本的标记是一件费时费力的工作,而较少的训练样本与高光谱图像较高的维度易造成“休斯效应”。对此,本文在高光谱图像小样本的情况下,从数据扩充以及降维的两个角度提出了适合该情况的两种算法,主要研究工作和创新思路如下:(1)提出了适合高光谱图像小样本条件下
移动通信技术追求的一个技术指标是更快的数据传输速率。但目前的蜂窝架构网络却可能对此施加限制。于是一种新的被称为Cell-Free Massive MIMO或简称为CF的网络概念被提出。与此同时,随着移动终端设备计算能力的大大增强,一些如VR等的计算密集型任务逐渐需要由被移动设备完成。但用户往往希望这些任务能够以低时延被完成,从而为自身带来良好体验。而设备的便携性又会限制其计算能力,使得上述目标很难
在临床医学中,使用计算机断层图像(Computed Tomography,CT)进行辅助诊断与治疗已非常常见,通过计算机断层图像技术获得患者的身体信息可帮助医生快速,准确的找出患者患病区域与存在的问题,尽快安排治疗方案,帮助患者早日摆脱病魔的困扰。随着计算机技术与人工智能技术的发展,通过计算机对医学图像进行处理,帮助医师快速准确的检测患者病因已获得多方关注,其中,为保证后续诊断的正确性,应当将计算
在现阶段空空攻防战中,末制导律阶段由于其作为弹目最终交汇条件的判断依据,因此在控制领域中收到广泛关注。现如今,基于末制导律的设计方法多采用传统的比例制导律或其变种,其在理想情况下效果尚可,但在现如今目标机动方式多变、环境存在噪声的末制导场景下,其制导性能较差,因此新型制导律的研发与设计成为了当今的研究热点。针对于传统比例制导律中的导航比系数为一定值,而不能随着弹目当前所处状态的变化而令制导导弹采取
卫星电源系统是卫星的核心组成之一,卫星电源故障会造成严重的、无法修复的损失。卫星电源系统的异常作为故障发生的“前兆”,若任其发展将导致星上任务完全失败,这就需要对卫星的运行状态进行持续和准确的异常监测。由于地面对于在轨卫星运行状况的掌握完全来自于卫星监测参数,随着卫星复杂度和监测参数的不断增长,通过数据驱动的方法对监测参数进行分析和建模,学习数据特征并实现对异常的检测,成为了航天领域研究的一个重要
工业机器人在生产领域智能程度的提升极大地扩展了机器人的功能。智能化工业机器人不仅能将人们从复杂恶劣的工作环境中解放出来,还提升了生产效率和产品的品质,已经成功渗透到生产制造的各个环节中。喷涂机器人作为其中的重要组成部分,在家具喷涂行业也逐渐得到了应用。由于座椅类家具种类多且空间结构复杂,喷涂自主规划困难,喷涂机器人仍然使用手动示教方法,这会带来工作效率低而且喷涂的质量由示教人员的操作技巧决定的问题