大别—苏鲁超高压榴辉岩脱水部分熔融实验及动力学意义

来源 :中国地质大学 | 被引量 : 0次 | 上传用户:cytunyu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在过去二十年中,超高压变质作用及超高压岩石研究是国际地学研究中的热点课题。中国学者通过岩石学、矿物学、地球化学、年代学等多学科综合研究并结合大陆科学钻探工程(CCSD)实施,使我国超高压地质研究水平得到极大提升,尤其是大别—苏鲁变质带的研究成果为世界超高压地质研究做出很大贡献。当前,超高压地体折返过程及控制机制仍是该领域研究中亟待回答的重大科学问题之一。地质观察、实验模拟和年代学分析均表明,超高压岩石在深俯冲大陆折返过程中存在明显的部分熔融作用。该过程对超高压岩石的物质交换、流变学性质改变等产生重要影响,这对于认识大陆深俯冲过程和超高压变质岩折返机制具有重要启示意义。在大别—苏鲁超高压变质带中,以威海和碧溪岭为代表的地区出露有典型的超高压岩石部分熔融现象。野外实际观测表明,威海超高压榴辉岩岩块边缘部位分布有长英质脉体,脉体产出与剪切面理一致。在面理化榴辉岩中,发育有由长石和石英矿物组成的细微斑点,长英质矿物同石榴石、绿辉石等一同发生塑性变形。这显示出不同产状产出的超高压榴辉岩在剪切变形下的部分熔融特征。经过部分熔融作用的超高压片麻岩主要表现出较为强烈的混合岩化,出现黑云母和角闪石的深色成分带、长石和石英的浅色成分带以及钾长石伟晶岩脉等三种特征明显不同的成分层。室内岩相学观察显示,威海超高压榴辉岩和碧溪岭超高压片麻岩中存在岩石部分熔融的结构证据。二者内部发育有毫米级的长英质脉体,脉体由细粒、自形斜长石+石英构成。榴辉岩中多硅白云母和黝帘石具有后成合晶环边结构。以上观察结果表明,超高压岩石可以在含水矿物脱水分解下发生部分熔融。该现象的观察和解释对应于目前对超高压岩石部分熔融作用机制的认识,即在超高压岩石折返的特定阶段中、岩石中含水矿物通过脱水析出流体来诱发岩石部分熔融,并相应地导致岩石化学成分变化和流变学性质的改变。由于多硅白云母、黝帘石/斜黝帘石和硬柱石等是榴辉岩中普遍存在的超高压含水矿物,认识这些含水矿物在超高压变质演化P-T轨迹内的稳定性对于了解岩石部分熔融特征具有重要意义。作为超高压岩石中常见的富钾含水矿物,多硅白云母在2.3~3.2GPa的脱水分解温度最为接近榴辉岩初始部分熔融温度。因此,非常有必要查明多硅白云母在不同温压条件下的脱水熔融特征及对寄主岩石起始熔融条件的控制与影响。本论文以大别山东部碧溪岭超高压变质榴辉岩为天然的实验样品,使用活塞圆筒式高温高压装置,模拟超高压岩石折返过程的温压条件,在1.5、2.0、2.4、3.0GPa,800~1000℃下进行18个封闭体系条件下的脱水熔融实验,系统研究多硅白云母在榴辉岩中的脱水熔融特征,来认识超高压榴辉岩中脱水熔融记录所表达的地质信息和动力学意义。实验研究取得以下三个方面的主要认识:1.温度和压力条件对多硅白云母脱水熔融反应具有明显控制作用通过对1.5~3.0 GPa和800~1000℃下实验产物和熔融结构分析,表明榴辉岩中多硅白云母脱水熔融反应随温度和压力改变而变化。在1.5~2.0 GPa和800~850℃下,多硅白云母和黝帘石在亚固相下析出流体弥散到体系中。在流体助熔作用下,体系中易熔组分优先熔融,原生蓝晶石形成由更长石组成的反应边,反应体系初始熔融反应表示为Ky+Q+Omp+H2O→Melt和Ky+Melt→P1-Ⅰ。随着温度升高,多硅白云母和黝帘石直接熔融,熔体由含水矿物边部逐渐扩展至反应体系内,较大比例的熔体结晶形成更长石。该阶段熔融反应表示为:Phe+Omp+Q→Pl-Ⅱ+Ky-Ⅰ+Melt,更长石是多硅白云母在榴辉岩中主要的熔融反应产物。新生矿物相是含水矿物通过直接熔融结晶(如蓝晶石)和与不同矿物相发生熔融反应(如更长石)来形成。随温度升高,体系内熔体比例逐渐增加,多硅白云母完全熔融形成新生石榴石:Phe+Omp+Q→Pl-Ⅱ+Gt-Ⅰ+Ky-Ⅰ+Melt。多硅白云母由亚固相脱水至完全熔融是一个逐步过程,在1.5~2.0GPa为100℃、2.4~3.0GPa下则<50℃。随着压力升高,反应体系中熔体比例有所减少,在脱水熔融产物中形成钾长石。在该压力范围内,硬玉出现在熔融反应产物中。多硅白云母在2.4~3.0 GPa和900~950℃熔融反应表示为:Phe+Omp+Q→Jd+Gt-Ⅰ+Kfs+Ky-Ⅰ+Melt。单斜辉石(硬玉分子)对多硅白云母在基性岩中脱水熔融反应具有重要意义。2.榴辉岩脱水熔融的残余矿物相随温压条件变化而改变石榴石和绿辉石是榴辉岩部分熔融实验中的主要残留矿物。随着温度和压力变化,石榴石中铁铝榴石和钙铝榴石分子的变化趋势不同,不同压力区间内具有一定差异。同—压力条件下的升温过程中,铁铝榴石分子呈现升高—降低—升高的变化规律,钙铝榴石分子则相应地呈反向的变化规律。镁铝榴石和锰铝榴石分子受温压条件变化影响较小。在更高温度下(950~1000℃),多硅白云母脱水熔融形成新生石榴石。新生石榴石镁铝榴石端元分子数升高,钙铝榴石端元分子数降低,表明多硅白云母熔融为其提供MgO来源。相同压力条件下,随着温度升高,绿辉石中硬玉分子含量降低。随着熔融比例升高(由7%升高到30%),绿辉石中硬玉分子含量明显下降。相同温度下,随着压力升高,绿辉石中硬玉分子总体上呈现升高趋势,不同温度区间内升高值不同。在≤2.0GPa下,绿辉石中硬玉分子随着温度升高明显出溶,矿物中Ca-Tschermaks分子和顽辉石—铁辉石组分随之升高。在2.4~3.0GPa下,绿辉石中硬玉分子变化平缓。压力升高则对绿辉石矿物中硬玉分子的出溶具有明显地抑制作用。长石成分对比表明,蓝晶石边部形成的斜长石和多硅白云母熔融形成的斜长石没有明显区别,均属于更长石。随着温度升高,斜长石中钠长石端元组分明显升高而钙长石端元组分明显降低;随着压力升高,斜长石中钠长石端元组分变化不明显,钙长石端元组分降低,钾长石端元组分有所升高。黝帘石具有典型的逐步分解熔融特征,可在较宽的温度范围(如750~950℃)发生熔融并形成反应边,反应边由斜长石和熔体构成。随着温度升高,黝帘石熔融明显,形成长石和蓝晶石矿物等。相同压力下,黝帘石的初始脱水熔融温度较多硅白云母更低,但是本次约束的岩石脱水熔融固相线低于黝帘石脱水熔融固相线近75℃。黝帘石脱水熔融主要反应与多硅白云母有明显不同,压力是黝帘石反应变化的主要控制因素。蓝晶石是在反应物和生成物中均出现的特殊矿物。矿物成分和分布特征可确定新生蓝晶石从多硅白云母熔融后的熔体中直接结晶形成。实验所获得原生蓝晶石的反应边结构可用来指示反应体系中流体活动的强弱。金红石矿物具有较好稳定性,没有参与熔融反应的特征。3.压力和温度变化对榴辉岩部分熔融的熔体成分具有控制作用在1.5GPa、800℃,2.0GPa、850℃,2.4 GPa、850℃,3.0 GPa、950℃下,实验体系中形成熔融比例在~3%的初始熔体,熔体环绕含水矿物边缘或呈团块状分布在不同矿物相接触区,表明熔体形成与含水矿物脱水分解及与相邻矿物(如绿辉石、石英等)熔融反应相关。在1.5~3.0GPa和850~950℃,岩石中初始熔体SiO2在67.02%~74.76%,TiO2+FeO*+MgO=0.56%~2.22%,CAO=0.22%~3.44%,Na2O+K2O=4.04%~8.27%。熔体总体呈花岗质特点,分布在奥长花岗岩(1.5~2.0GPa)区域。在1.5~2.0GPa、1000℃下,实验获得熔融比例较高(~30%)的熔体,2.4GPa下熔体比例较低。熔体中SiO2在68.48%~71.08%,其它主要氧化物组分为:TiO2+FeO*+MgO=0.62%(2.4 GPa)~3.99%(1.5GPa)、CaO=0.25%(2.4GPa)~2.37%(1.5GPa)、Na2O+K2O=0.70%(1.5GPa)~2.03%(2.4GPa)。压力和温度变化对熔体中SiO2、TiO2+FeO*+MgO、CaO、Na2O+K2O具有较强控制作用。总的变化规律是:相同温度下,随着压力增加,SiO2、Na2O+K2O含量有所增加,TiO2+FeO*+MgO、CaO含量降低;压力≥2.4 GPa,熔体中Na2O明显递减,而K2O明显增加;相同压力下,随温度增加,熔体中SiO2、TiO2+FeO*+MgO、CaO含量增加,Al2O3、Na2O+K2O明显降低,表明石英、金红石、绿辉石、多硅白云母及黝帘石等矿物不同程度上发生熔融为熔体贡献组分。1.5~2.0GPa、1000℃下熔体微量元素特征显示,熔体具有高Sr、低Y和Yb,高Sr/Y和La/Yb比、负Nb-Ta异常特征。熔体的LREE富集、HREE亏损,具有高La/Yb比、正Eu异常。这表明实验形成的熔体和残余矿物组合与埃达克质岩石特征具有较好一致性,榴辉岩部分熔融可以直接形成低镁的埃达克质岩浆。通过本次榴辉岩部分熔融实验研究,所获得的主要动力学意义表现在:1.实验结果对大别-苏鲁榴辉岩的部分熔融条件和性质具有明确约束意义本实验获得多硅白云母在1.5~2.0GPa下脱水熔融温度≤800~850℃,熔融温度随压力增加而升高,表明多硅白云母1.5~3.0GPa的脱水熔融曲线为正斜率。本次多硅白云母脱水熔融温度值高于含水合成体系约50℃,低于中酸性岩石体系约50℃。将本实验结果与超高压榴辉岩的“热”折返P-T轨迹相结合,表明超高压榴辉岩脱水部分熔融的最合理压力和温度区间为1.5~2.0GPa、800~850℃,即石英榴辉岩相向角闪岩相转变过程中。这表明,在没有外界流体参与下,依靠超高压变质岩中含水矿物的自身脱水熔融可以导致岩石局部范围内的部分熔融或混合岩化。2.实验结果对大别-苏鲁榴辉岩的部分熔融过程具有明确指示意义实验结果表明,在≥2.4 GPa、≥850℃下,熔体可更多地溶解体系中的自由流体而使体系处于流体不饱和状态,这使得多硅白云母可以通过脱水熔融形成钾长石。超高压榴辉岩中钾长石可视为多硅白云母脱水熔融的产物,指示此条件下反应体系处于流体不饱和状态,暗示榴辉岩由柯石英榴辉岩相向石英榴辉岩相转变过程中可能经历一次局部熔融过程。蓝晶石具有斜长石反应边则指示了另一次反应条件有明显差异的部分熔融作用。结合1.5~2.0GPa、800~850℃实验结果,多硅白云母和黝帘石在亚固相下脱水,流体在体系中运移和活动导致部分熔融,富钾钠的熔体与蓝晶石发生反应形成斜长石反应边。蓝晶石的斜长石反应边及长英质脉体用以指示榴辉岩在1.5~2.0GPa和含自由流体条件下的部分熔融过程,表明超高压榴辉岩在石英榴辉岩相向角闪岩相转变中经历了流体明显活动的部分熔融作用。3.实验结果具有重要的物质交换和构造物理意义将榴辉岩部分熔融的熔体成分与造山带碰撞后“滞后”侵入的埃达克质岩性(如东大别天堂寨岩体)对比,熔体成分与大别山早白垩世高钾低镁埃达克质岩相类似,证明这类高钾低镁的埃达克质岩浆形成深度应当>50Km。超高压榴辉岩部分熔融可形成低密度岩浆,这将弱化岩石力学强度并改变岩石变形机制。在岩石较高部分熔融度下,残余物(石榴石+绿辉石)密度值超过正常榴辉岩密度,熔体与高密度残余物将有效分离,使该条件下重力趋于不稳定并促进造山带加厚下地壳拆沉作用的发生。
其他文献
目的:阐述芒果叶化学成分、药理作用及开发利用价值。方法:查阅相关文献进行总结和归纳。结果:芒果叶药材资源丰富,且具有分布地域广、原料易得、价格低廉等优点。芒果叶具有
针对绿灯末期小车跟驰大型车辆的闯红灯现象,位研究信号灯位置不合理是否会引起被迫性的误闯红灯情况,笔者以南京市某交叉口车流数据为依据,通过单因素方差分析得出视线遮挡
<正>为加快黄鳝养殖技术的研究和推广,建瓯市盛源水产实业发展有限公司承担了福建省发展改革委"黄鳝集约化养殖及人工繁殖技术的推广"项目,对黄鳝池塘网箱养殖这一新型实用的
期刊
介绍了黄鳝网箱生态养殖技术,包括水域选择、网箱布局与准备、鳝种选购与放养、饲养管理、水质管理、预防鳝病等内容,以期为黄鳝养殖提供参考。
生丝细度的动态检测是生丝电子检测技术中的关键问题,也是个难点。文章运用视频图像传感技术和计算机动态检测方法,对卷绕中的生丝细度序列进行在线检测试验,得到生丝细度序
本研究分别对两种体色黄鳝(Monoptetus albus)群体的各生物学指标进行了测定,并对两种体色群体黄鳝在不同生长阶段的绝对增重、各项生物学指标、个体相对繁殖力以及绝对怀卵量
随着科学技术的发展,世界进入了数字化时代,数字信号处理已被广泛的应用到电子、生物、机械、仪表、通信、地质勘探等领域.数字信号处理的理论及其应用在我国也受到越来越广