域自适应性人脸识别方法研究

来源 :桂林电子科技大学 | 被引量 : 0次 | 上传用户:seraphim
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,人脸识别作为一个具有安全、方便、快捷等特性的生物识别技术已经应用于很多领域。一个较好的人脸识别模型往往依赖于大量的训练数据,但在一些特殊的领域,例如公安、医院等机构不具有大量带有标记的训练样本。在这种情况下,人脸识别有如下挑战:如果将源域(与应用场景数据分布不一致)训练的人脸识别模型应用到目标域(与应用场景分布一致)中,识别性能会大大降低;如果只对图片库gallery样本进行学习,gallery类内散度矩阵退化为0,大多数判别分析方法无法应用,导致训练的模型容易欠拟合,泛化能力差。
  域自适应方法可以通过将带标签的源域数据中的判别信息迁移到无标签的目标域数据中,从而帮助目标域数据的类别预测。然而,现在大多数域自适应方法无法高效利用训练样本特征的多样性,导致判别模型的效果较差;另外,由于目标域不具备标签,无法直接对目标域样本进行训练,即便通过重新构造源域数据的方法,使源域数据分布与目标域的数据分布近似,但是依然无法达到分布一致。因此如何学习更丰富、更准确的判别信息是一项富有挑战的任务。针对上述问题,本文主要做了以下两个研究工作:
  (1)提出了一种基于域自适应的多子空间人脸识别方法。本研究工作的创新点有:1)提出了一种多源域自适应子空间的方法以充分利用多个源域的样本信息,提升模型的判别能力,并进行了理论推导;2)设计了一种基于域自适应的多子空间人脸识别框架以获得样本更多的判别信息,由于样本在单一子空间中的特征表示是唯一的,为了能够保留样本特征的多样性,同一样本在不同的特征空间中能够保留不同的判别特征,增加了样本特征的多样性,提高模型的分类性能,并从理论上分析了其可操作性和有效性。
  (2)提出了一种基于域自适应的标签重构人脸识别方法。在本研究工作创新点有:1)为无标签的目标域样本学习一个相似度矩阵和标签预测概率矩阵,并将其转化为一个线性规划问题,对其求解后得到最佳预测标签概率矩阵,根据概率矩阵得到目标域的预测标签;2)采用类似于线性判别分析的方法对目标域数据学习判别模型。在判别模型学习中,用目标域数据来估计gallery的类内类间散度矩阵,从而加入gallery的判别信息,提高了模型的分类性能。
  上述研究分别在在单个数据集和交叉数据集中进行大量实验,实验结果表明本算法具有较好的性能。
其他文献
“三塘拥田舍,悠然见曹山。”这是溧阳市上兴镇牛马塘村的原乡风貌。牛马塘地处丘陵地带,村中植被覆盖率高,有大片的原始松林及梯田,自然风景优美。中心村落被牛马塘、上兴塘及雅雀塘三大水库所包围,村庄保留着纯农业田园环境,为溧阳鱼米之乡的典范。   曾经,这里的村民们家家户户种植红薯,也有着传统的竹编、酿酒等技艺,但随着市场经济发展,青壮年纷纷外出务工,牛马塘渐渐成了“空心村”。2017年,牛马塘入选江苏
期刊
近年来,得益于移动互联网的不断发展,人们的日常生活以及工作越来越方便。在旅游出行方面,人们可以通过网络来获取相关旅游服务信息。然而随着网上用户的增长,使得互联网的数据急剧增加,用户需要耗费大量时间去查询相关的旅游信息,造成了极大不便。推荐系统可以有效地处理上述存在的“信息过载”问题,为用户提供兴趣点推荐服务。
  在旅游推荐领域中,传统的兴趣点推荐算法虽然取得了良好的效果,但这些方法比较依赖浅层特征设计,不能全面地学习用户和兴趣点的深层次特征,并且传统推荐模型存在数据稀疏和推荐效率低等问题,会影响推
边缘计算是一种新兴的计算架构,能为低延时和高带宽需求的应用提供更好的性能的改进。边缘计算作为云计算下沉到用户侧的部分,能高效的发挥数据汇聚的作用,边缘计算协同云、终端,进而对海量数据进行分析和控制。5G技术解决了网络接入的问题,而没有解决骨干网和城域网带宽和延迟问题。不计其数的5G智能终端和物联网终端的连接会造成带宽资源的抢夺,因此,云、边和端节点间的通信仍旧面临阻塞的网络问题,而边缘计算是一种很好的解决方案。
  基于互联网的在线多媒体视频(长视频和短视频)逐渐取代传统电视,新规格的视频形式(4K
电子计算机断层扫描(ComputedTomography, CT)检查是疾病诊断的一种重要手段。为了给当前患者做出稳定可靠的疾病诊断,医生往往需要参考历史病历的CT图像。然而,面对庞大而复杂的CT图像数据库,如何高精度地检索出医生所需的CT图像已经成为当前计算机辅助诊断技术迫切需要解决的问题。CT图像因病变形状各异导致传统的基于单一底层视觉特征的CT图像检索结果不尽人意。因此,为了提高CT图像检索结果的准确率,本文从多特征角度出发来研究CT图像的特征表示,并提出了两种基于多特征表示的CT图像检索算法。
由于我国人口老龄化和城市建设化进程不断加快,公民受环境和生活方式的影响也在加深,导致患心血管病的人数持续增加。临床上用于心功能检测的医疗仪器和方法不能实现非接触和无创采集的要求,虽然这些方法产生了不错的效果,但在检查过程中会对身体产生些许伤害。因此开发一种无创便捷式的家庭心脏监护系统显得尤为重要。
  心冲击信号(Ballistocardiogram,BCG)是心脏收缩和舒张时对血管冲击引起的身体微小震动,反映出心血管系统的状态。对BCG信号的分类进行研究,能够有效预防心血管疾病,同时有利于合理分配
“月季满墙,一路芬芳,油菜花染醉了小窗,竹里潇湘,静荷沉香,明月照亮了诗和远方。”这是张小燕写的歌《云沧海的小时光》里的开篇歌词,歌中写到的竹里、静荷、沉香、明月都是小院的名字。这首歌是中国首届农民丰收节庆典首播歌曲,被央视多次播放。   张小燕,作家、摄影家、企业家、慈善家、致公党员、政协委员、新阶层人士……她的头衔太多,而她最想让大家记得的,也是最令人印象深刻的,是她用美丽情怀做好美丽事业。 
期刊
目标检测是视觉领域研究的重要方向,在多个领域中有重要的应用价值。目前检测在背景嘈杂条件下,由于受到遮挡、光线不足等条件影响,目标发生形变,导致对模型的要求也日益提高,需要克服更多难题与干扰来提高其鲁棒性。如何在多种因素的影响下设计一个能精准识别目标的模型,成为该领域的重中之重。
  早期结合滑动窗口与图像缩放的算法检测成本高、效率低,多数高效算法都是基于卷积神经网络(CNN)被提出,虽在一定程度上控制了算法开销,并提高了对通用目标的检测准确率,但在对小尺度目标检测时效果仍不理想。研究发现,网络低层的
人流量预测在城市交通管理和城市公共安全中发挥着重要的作用,准确预测城市区域的人流量具有非常大的挑战。一方面,城市范围的人流量数据是高维度的,而在原始的高维数据中通常包含冗余信息,这会对预测结果造成一定的误差,降低预测的准确度。现有的预测模型大多数都没有考虑高维度人流量数据对预测精度和算法效率的影响,并且网络结构复杂、参数量大,训练网络需要消耗巨大的成本;另一方面,人流量的预测受到空间结构关联性、动态时间依赖关系和外部因素(例如天气、节假日、活动事件)等诸多复杂因素的影响。针对上述问题,本文根据城市区域人流
妈祖,又称天妃、天后、天上圣母,是从宋代沿续至今的以船工、渔民为信奉者主体的神祇。目前,全世界45个国家和地区有上万座妈祖庙,3亿多人信仰妈祖。在台湾,妈祖是最重要、影响力最大的民间信仰。2009 年,在海峡两岸的通力合作之下,联合国教科文组织审查并表决通过中国提案,妈祖信仰民俗被正式列入人类非物质文化遗产名录,成为中国首个信俗类世界文化遗产。   由于漕运、河工的关系,清代是妈祖信仰最受官方重视
期刊
阿尔茨海默症(Alzheimers Disease,AD)是一种多发于老年群体中的发病期长、不可逆且不可治愈的神经病变疾病,俗称老年痴呆。近年来,中国人口“老龄化”的问题日益严峻,AD早期诊断的有效研究可极大缓解患者带来的家庭及社会经济压力,一定程度上为患病人群及医学诊断提供有意义的指引。因此,如何有效地对AD早期进行诊断已经成为重要的研究方向。
  随着深度学习(Deep Learning,DL)与医疗技术的不断深入,越来越多的领域从传统的人工分析转换到计算机辅助诊断。核磁共振成像(Magneti