【摘 要】
:
随着科技的发展,智慧大棚、智慧温室和植物工厂等的出现,改变了传统农业种植方式。近年来温室大棚种植规模越来越大,这种种植方式使植物生长环境得以人为控制,充分发挥土地产能,提高产量。植物光照控制系统结合计算机网络技术对植物的生长环境进行调控,具有理论研究和实用价值。 针对温室内植物种植的光环境调控,本文采用新型光源LED作为补光光源,以无线网络通信方式,采用简单的星型拓扑结构,将各个终端节点与Zig
【机 构】
:
华北电力大学(保定) 华北电力大学
论文部分内容阅读
随着科技的发展,智慧大棚、智慧温室和植物工厂等的出现,改变了传统农业种植方式。近年来温室大棚种植规模越来越大,这种种植方式使植物生长环境得以人为控制,充分发挥土地产能,提高产量。植物光照控制系统结合计算机网络技术对植物的生长环境进行调控,具有理论研究和实用价值。
针对温室内植物种植的光环境调控,本文采用新型光源LED作为补光光源,以无线网络通信方式,采用简单的星型拓扑结构,将各个终端节点与Zigbee协调器通过适用于短距离传输的Zigbee无线通信技术组成一个网络进行数据传输,实现无线网络搭建,协调器与PC端通过串口通信技术进行数据传输。基于Zigbee无线网络技术的植物光照控制系统,由PC端通过串口将补光控制指令信息发送到Zigbee协调器,再通过Zigbee无线网络将信息发送给各个终端节点,通过改变PWM的占空比分别对LED光源补光模块进行调控,光照传感器模块通过I2C协议将采集到的光照数据发送给终端节点,由终端节点发送到协调器,然后传输到PC端,在植物补光可视化平台显示出来,供用户查看,用户根据当前温室内光照数据,进行补光操作,完成科学补光。另外,LED光源布局排列,设计了两种不同布局的LED光源阵列,并通过公式推导和仿真实验,进行分析对比。结果表明,在光源高度z为15cm的条件下,交错间隔排列的光照强度均匀性优于等间距均匀排列,为现代化农业种植提高了资源利用率。
其他文献
区块链技术作为去中心化的颠覆性技术,在近几年里得到了许多专家学者的深入研究。以区块链技术为基础的应用迅速普及开来,涉及金融、知识产权保护、身份认证、物联网以及医疗等众多领域。共识机制作为区块链中的关键技术之一,研究共识机制的安全性以及改进现有共识机制的缺点对于区块链技术的进一步推广具有非常重要的意义。 本文针对区块链中的共识机制进行研究,重点研究区块链中使用PoW共识机制引起的区块链分叉现象。首
随着智能电网和泛在电力物联网的快速发展,电力系统已经进入了电力大数据时代,而传统的风电机组关键部件故障诊断模型多是基于单机、小样本的诊断方法,不能满足大数据时代大数据量级的故障诊断需求;传统的基于振动数据的诊断方式,需要安装传感器等设备,诊断成本居高不下。而大数据存储和处理技术以及SCADA数据为其提供了新的解决方案。该课题构建了包含spark、Hadoop等在内的云计算平台,选取大量的风电机组S
图像描述是计算机视觉和自然语言处理交叉而衍生出的新兴领域,可在人工智能时代诸多场景中应用,结合实际领域进一步开发还可以协助教育和医疗等行业更快的进入智能化时代。因此本文提出基于注意力机制的图像描述方法,利用了图像特征提取技术与描述生成技术,不仅提高机器处理图像的效率,还可以生成准确高的图像内容描述。本文主要做了以下几方面的工作: 介绍了图像描述领域的发展和研究现状,通过梳理该领域的由来和发展过程
双目立体视觉在人工智能领域研究中占有重要的地位,是计算机视觉研究中的一个重要分支,广泛应用于机器人导航、视频监控、医药诊断、军事侦察和无人驾驶等领域。双目立体匹配模拟人类双眼看到事物在大脑中进行信息处理的原理,利用像素匹配方法确定双目相机获取的左右两目图像中各像素间的对应关系,计算三维空间中的深度信息,最终通过图像的角度、颜色、边缘特征等信息把物体的平面图像还原成三维立体场景,以达到从平面到立体的
近些年来,农作物产量预测已经成为农业科学领域的研究热点,对解决粮食生产问题具有关键性作用。因此准确、及时地对农作物产量进行预测对国家制定相关粮食政策具有重大意义,同时为农业决策提供了合理的依据,也为农作物改善措施提供重要根据。通过预测得到的结果可以有针对性地观察农作物的生长周期、土壤变化、雨水分布等因素对农作物产量的影响。传统的农作物产量预测方法尽管能获得一个农作物估产值,并在一定程度上反映农作物
随着二十世纪互联网的迅速发展,网民规模高速增长,人们开始习惯在网上交流,发表自己对某件事情的看法。在这些信息的背后,隐藏着巨大的商业和社会价值。情感分析就是针对这些网上评论的情绪倾向性进行的一种数据分析和处理,目前已经成为工业界和学术界的一个重要任务。但现阶段情感分析任务仍存在对关键信息学习不充分,情感分类准确性不高等多方面的问题。 针对目前情感分析模型存在的提取关键信息能力不强,无法有效捕捉特
变电设备是电力系统中最重要的一类设备,其故障能否快速而准确的诊断将直接影响到网供电可靠性和系统的安全运行。持续在线的电网监测数据给传统的数据处理方式提出了挑战,电力系统已经进入“大数据”时代。Storm作为流数据的分布式处理框架具有实时性和可扩展性等优势,可以满足电网数据的实时、持续的监测需求。本文研究了基于Storm的局部放电信号的并行分解方法,改进了在线序列学习机算法,同时研究了模型标记语言和
在智能电网中,智能电表实时采集用户的细粒度用电信息并周期性发送到控制中心,控制中心利用采集到的用电信息进行发电预测、实时定价及需求响应。由于用户的细粒度用电信息包含个人隐私,如若发生用电数据泄露将会影响用户的使用,从而制约智能电网的发展。因此,信息安全是智能电网稳定运行及发展的前提。本文围绕认证、数据完整性、机密性及保护用户数据隐私等确保智能电网安全稳定运行的要求设计了如下方案。首先,提出了一种高
随着互联网产业的快速发展,社交网络自媒体时代的到来,微博作为一种以信息发布、互动交流为主的广播式社交网络平台,消息传播速度快范围广。对海量的微博文本的进行情感分析,挖掘用户对商品、新闻、能有效的了解用户的喜好,监控社会舆论走向,具有重要的意义。情感分析是自然语言处理领域的一项重要任务,已经成为当今热点研究方向。深度学习不同于传统的设计网络,基本不需要人工辅助,通过学习数据的浅层属性和特征,总结规律
近年来,智能交通领域在人工智能领域的推动下不断发展,车辆跟踪技术作为智能交通领域研究的基础问题越来越受到人们的关注。深度学习作为解决目标跟踪领域问题的主流方法,基于深度学习的车辆跟踪算法成为了智能交通领域研究的热点,如基于卷积神经网络(CNN)的目标跟踪模型,虽然该类模型在跟踪的准确性上取得了突破性的进展,但是在跟踪速度上很难做到实时跟踪。于是,基于完全卷积孪生神经网络(SiamFC)的目标跟踪方