激光增材制造AlxCoCrFeNi系高熵合金相调控及其强韧化机理研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:crystal_z
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
AlxCoCrFeNi系高熵合金因其优异物理化学性能,使其成为研究最早、最广泛的一类高熵合金。作为结构合金,强韧性的平衡是重点。但由于高熵效应,合金通常具有简单的相结构,强韧性难以达到平衡:单相FCC合金通常强度低塑性高,单相BCC合金则相反。为此,双相FCC+BCC合金的研究成为平衡合金强韧性的研究热点。本文旨在采用激光增材制造快速制备具有高强高韧性能的AlxCoCrFeNi系高熵合金。通过元素调控、工艺调控和后处理强化等方式,调控合金相比例、晶粒尺寸及形态,研究合金的组织性能变化以及合适的强化方式,实现高熵合金的强韧性平衡并探索其强化机制。具体研究内容及结果如下:(1)对合金元素成分进行调控,发现随着Al含量升高,合金相成分由FCC(x=0~0.3)变为FCC+BCC(x=0.6~0.9),最后转变为BCC(x=1.0),合金的硬度和强度随之提升,塑性下降。组织发生柱状晶-枝晶-等轴晶-等轴枝晶的变化。x=0,0.3,0.6三种合金的拉伸性能显示,Al0.6CoCrFeNi高熵合金因其合适的双相占比,从而实现合金强韧化的结合,具有900Mpa的拉伸强度和25%的延展率。(2)通过改变扫描时间和输入功率,发现激光增材制造技术特有的原位热处理过程会引起组织由树枝晶向柱状晶演变。条件为500s以上的循环加热时间和630℃左右的循环高温。在此环境下,晶界聚集、晶粒长大。组织变化后,合金的性能由609MPa的屈服强度和23.71%延展率(树枝晶)变为500MPa屈服强度和25.35%的延展率(柱状晶)。FCC相的增加和晶粒的粗化是DED-Al0.6CoCrFeNi合金塑性提高而强度降低的主要原因。(3)对两种组织进行700℃、900℃、1000℃/4h热处理,发现随着温度的升高,两种合金组织的强度先升高后下降,塑性的变化则相反。主要区别在于700℃热处理后,树枝晶内析出硬脆相σ,延伸率下降至9.5%,屈服强度提高至690MPa。而柱状晶的屈服强度提高至815MPa,延伸率保持在22.08%,其强韧化机理在于位错切割析出的纳米B2相提高合金的强度,σ相的缺席和大体积占比的FCC保持合金塑性。原位热处理+700℃/4h的双热处理方式能够有效提高合金的强韧性。
其他文献
细胞作为构成生物体的基本结构和功能单元,其生物环境中的许多特异性生物标志物与疾病的发生、分化和发展息息相关,对细胞生理功能的调节至关重要。探究细胞中特异性癌症生物分子表达水平的变化对于生物医学上开展癌症的预后和诊断的研究具有重大的指导意义。细胞组成的多样性使生物环境十分复杂,通常一种疾病与一种及以上生物标志物有关或与其他疾病共享一种生物标志物。因此利用细胞内单一生物标志物的检测手段进行疾病诊断易出
高熵合金因具有高强度/硬度、良好的抗氧化/蠕变/腐蚀/磨损能力和耐高温软化能力,已得到了国内外研究人员的广泛关注,成为新材料重点研究方向之一。近年来,基于高熵合金的合金设计概念正经历从等原子合金到非等原子合金的概念拓宽,为了给设计富铜非等原子高熵合金提供实验依据,本研究系统地研究了一种富Cu非等原子比CoCrFeNiCu4高熵合金,初步提供了对该合金在各种热循环和热机械加工过程中组织、力学行为变化
新能源汽车的安全性、续航性能、使用寿命等特性由动力电池直接决定,电池性能的优劣成为制约新能源汽车产业蓬勃发展的焦点问题。电池对温度极其敏感,温度变化会对电池的内阻、容量、充放电循环次数等特性产生一些不可逆的影响,严重时还会出现安全隐患。因此,有必要采用热管理系统来维持电池温度范围,研究电池热管理系统具有重要意义。本文基于三元锂离子电池模组,提出了液冷散热方案,对位于模组底部的并行流道液冷板进行结构
近年来随着互联网企业、造车新势力以及传统车企纷纷投入自动驾驶市场,自动驾驶领域呈现出火热的势态。3D目标检测作为自动驾驶车辆感知系统中最重要的一环,其直接决定了自动驾驶车辆是否能够按预期安全运行,这就使得3D目标检测正成为计算机视觉最活跃的研究领域之一。如今,体积更小、性能更强的计算设备得以在车辆上部署,各种模态的传感设备使得车辆对周围环境的建模能力得到增强,3D目标检测的发展迎来了许多机遇;但与
随着科技的快速发展,人工智能的迅速崛起,大数据的普及应用,移动机器人的智能化研究掀起了热潮,同时在未知环境领域中路径规划也是移动机器人自主移动的关键。本文围绕基于阿克曼类型的舵机转向的移动机器人,展开对路径规划方面的研究,搭建了阿克曼小车平台,并设计了该小车自主导航系统。首先本文介绍实验设计的阿克曼小车的总体结构,对实验需要的零件进行选型以及将所有零件电路进行合理布局连接,最终做成实物。根据阿克曼
任务的兴起,使得越来越多的研究人员投入到这一工作中。其中,数据集在文本摘要任务中起着举足轻重的作用,但制作一个高质量的数据集,需要耗费大量的时间及成本,如今这方面的研究还不成熟。因此,当前迫切需要一种准确、高效的算法快速制作出某个领域的数据集。另外,针对seq2seq+attention模型中的暴露偏差问题,领域学者尝试采用不同的方法解决,但已有的方法是以增加训练成本或降低摘要可读性为代价,两者未
镉(Cd)是一种生物毒性很强的重金属元素,对人类具有致癌性,已被国际癌症研究机构列为一级致癌物。然而,随着现代工业化的发展,环境污染日益严重,农田重金属Cd大面积污染对我国粮食安全已构成重大威胁。水稻是全世界最主要的粮食作物,也是人体Cd摄入的主要饮食来源。因此,减少稻米Cd累积是水稻科学研究与产业发展的重要方向。OsNRAMP5是Cd、锰(Mn)吸收的主效转运蛋白,其功能缺失突变体具有极强的降C
由金属离子或者金属原子为中心,与有机化合物全部或者部分通过配位键结合所形成的物质称为金属有机配合物。含氮金属有机配合物的合成与应用是一个引人注目的领域,这些配合物的结构丰富多彩,并且在工业催化、材料科学和生命科学等领域具有十分重要的应用。在有机催化领域,含氮有机配体可以络合各种金属,为Heck、Suzuki和Henry等偶联反应提供良好的催化效果。由于含氮金属有机配合物结构的多变性,设计出具有水溶
近年来,汽车保有量快速增加引发的交通拥堵问题日益严重,信息通信、人工智能等新技术催生下的自动驾驶被科研人员寄予厚望。在工业界,各大车企和互联网公司纷纷加入“造车”热潮,自动驾驶的理论研究和商业化进程被推向了前所未有的高度。智能网联汽车将智能化和网联化的优势充分融合,通过车车通信形成的车辆队列系统,有助于提高交通流整体性能。车辆队列系统经过多年的理论研究进展显著,并在商业化进程中取得了突破。然而,现
羊具有很高的食用和使用价值。近年来,人们对肉制品、奶制品需求量的增加直接带动了畜牧业的发展,目前,规模养殖已经成为养羊业的主流。随着羊产业饲养密度的增大,羊病的发生率也在同步增长,病毒感染是导致羊患病的重要原因之一。羊病毒种类繁多,如小反刍兽疫病毒(Peste des petits ruminants virus,PPRV)、绵羊肺腺瘤病病毒(Jaagsiekte sheep retrovirus