石墨烯增韧WC-Al2O3复合材料的制备及性能研究

来源 :东华大学 | 被引量 : 0次 | 上传用户:gksd2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
WC-Co硬质合金具有优异的硬度、韧性、耐磨性及抗弯强度等性能,被广泛应用于切削工具、钻探工具、拉拔模具、耐磨涂层等领域。但是,Co是稀缺的战略资源,在众多领域的需求都在不断增加。我国Co资源贫乏,主要依赖进口。为应对Co需求增加和资源稀缺问题,许多学者开展了无Co硬质合金的研究。其中,WC-Al2O3复合材料具有较高的硬度和优异的耐腐蚀性能,是一种有应用前景的无Co硬质复合材料。然而,脆性依然是无Co硬质合金面临的一个重要的共性问题,制约了其进一步的工程应用。近年来,石墨烯因其具有较高的比表面积和优异的力学性能受到了学术界的广泛关注。已有研究表明,石墨烯的引入能够有效改善陶瓷材料的力学性能,其对脆性材料断裂韧性的改善也已经得到了一定的实验验证。同时,石墨烯还具有一定的自润滑特性,为进一步改善材料的摩擦磨损性能提供了可能性。因此,本文作者从“显微组织结构优化”和“力学与摩擦磨损性能同步提高”的角度出发,在WC-Al2O3复合材料中引入石墨烯,以期进一步改善材料的力学性能和摩擦磨损性能。具体研究工作和结果如下:1.研究解决石墨烯在WC-Al2O3复合材料中的分散问题,充分发挥石墨烯的增韧作用。石墨烯分散的难点在于既要克服WC、Al2O3和石墨烯因密度差异所引起的沉降问题,又要保留石墨烯原有的径向尺寸和完整的晶体结构。针对以上问题,选用复合分散工艺,研究获得了WC、Al2O3、石墨烯复合粉末的最佳方案为:用超声波分散石墨烯4h,用行星球磨分散WC-Al2O3复合粉末50h,然后将石墨烯与WC、Al2O3粉末混合再行星球磨4h。研究表明,在无水乙醇中加入10vol%聚乙二醇作为分散剂,可使陶瓷颗粒表面形成包覆效应,降低颗粒间的引力,明显延缓材料在分散液中的沉降速度、改善分层现象。分散结果显示,当石墨烯含量低于0.5wt%时,石墨烯可以在WC、Al2O3复合粉末中分散均匀,且其结构完整性较好、层数较少、径向原始尺寸基本保留;当石墨烯含量高于0.7wt%时,石墨烯之间接触机会增大,在范德华力的作用下,又重新发生了吸附和团聚。2.采用热压烧结制备WC-Al2O3-石墨烯复合材料,获得致密度高、晶粒细小、石墨烯结构基本完整的复合材料。研究石墨烯引入对材料显微组织结构与力学性能的影响。结果表明:石墨烯的引入细化了WC-Al2O3复合材料的晶粒尺寸,并同步提高了材料的硬度和断裂韧性。随着石墨烯的添加,WC晶粒尺寸先减小后增大,硬度和韧性则表现出先增大后减小的趋势;当石墨烯添加量为0.3wt%时,硬度和韧性达到最大值18.78GPa和11.09MPa·m1/2,分别提高了18.7%和40.8%。主要增韧机理在于均匀分布的石墨烯有效阻碍了裂纹扩展,增强了WC-Al2O3复合材料中原有的裂纹偏转、裂纹桥连效应。同时石墨烯的拔出过程进一步消耗断裂能;分布于颗粒间的石墨烯,使得断裂模式由沿晶断裂向穿晶断裂转变,消耗更多的断裂能,进而提高了材料的断裂韧性。3.研究石墨烯添加量对WC-Al2O3复合材料摩擦磨损性能的影响。发现随着石墨烯的添加,摩擦系数和磨损率先减小后增大。与未添加石墨烯的WC-Al2O3复合材料相比,添加0.5 wt%石墨烯时,摩擦系数达到最小值,降低了41.2%;添加0.3 wt%石墨烯时,磨损率达到最小值,降低了64.5%。添加0.3wt%石墨烯时,材料最低的磨损率主要归因于细小的晶粒尺寸和最优的力学性能,此时磨损机理主要为磨粒磨损。添加0.5wt%石墨烯时,石墨烯发生剪切滑移,形成大量层数更少的石墨烯摩擦膜。摩擦膜的润滑作用显著降低了摩擦系数。同时,摩擦膜对磨损面的保护作用,在一定程度上降低了材料的磨损率。4.研究了温度对WC-Al2O3-石墨烯复合材料摩擦磨损性能的影响,进而分析了高温条件下的磨损机理。研究结果表明,摩擦系数随温度的升高呈下降趋势,而磨损率随温度的升高呈上升趋势;石墨烯对WC-Al2O3复合材料的高温耐磨性有显著的改善作用。在高温条件下,WC-Al2O3复合材料力学性能的降低引起了材料表面严重的破碎剥落;高温氧化所形成的WO3降低了摩擦系数。然而,由于WO3的较低的力学性能以及与WC基体热膨胀系数的失配,加速了材料的氧化磨损。此时的磨损机理主要为破碎剥落、磨粒磨损以及氧化磨损。石墨烯的引入改善了材料的高温耐磨性能,其原因在于:均匀分布的石墨烯,阻碍微裂纹扩展和基体颗粒的拔出,减少压实层的剥落;同时,石墨烯与部分WC基体直接接触,阻碍WC与O2的反应,减缓了氧化磨损。如上所述,本文作者通过对石墨烯增韧WC-Al2O3复合材料的研究,发现石墨烯的引入实现了WC-Al2O3复合材料力学性能和摩擦磨损性能的同步提高。在此基础上,分析探讨了石墨烯对WC-Al2O3复合材料的增韧机理,揭示了石墨烯对WC-Al2O3复合材料磨损机理的影响规律,丰富了石墨烯增韧无钴硬质合金材料的研究内容。
其他文献
春节回家过年是炎黄子孙心中的民俗记忆和节日共识。2021年春节由于疫情防控和国民健康安全需要,"就地过年"成为新现象。以民俗学视角分析"就地过年"所衍生的一系列社会现象及民俗变迁;传统年俗在"就地过年"背景下年俗的变化;春节的传统民俗向信息化、商业化、娱乐化等方向发展变化等。从民众视角看这种变化是在疫情背景政府号召下民众自身的文化选择,年俗变化背后隐藏的传统及现代的民众文化心理,这种移风易俗的新年
关节软骨缺损治疗是目前临床上面临的最具挑战性的问题之一,由于软骨组织无血管、无神经和无淋巴的特性,在受损之后很难自行愈合。炎症反应是影响软骨损伤进程的一个关键因素,期间产生的大量促炎症因子会引起细胞的代谢紊乱和软骨基质分解增强,最终导致软骨缺损修复的失败,因此如何有效调控炎症反应是应对软骨损伤修复的重要策略。近年来,通过组织工程方法构建具有仿生天然软骨细胞外基质(ECM)特性的生物材料支架修复受损
熔焊是重要的金属材料连接方法,广泛应用在航天结构件、汽车车身、船舶分段等产品加工中。熔焊过程呈非线性、强耦合、高动态等特点,如何通过监测熔焊过程进行闭环控制一直是工程难题。基于深度学习的计算视觉近年来被认为是熔焊状态识别及缺陷检测的重要手段,是当前学术研究的热点。然而实际工程中面临熔焊图像存在强干扰、鉴别性视觉特征难以学习以及识别模型可解释性差等挑战。针对上述问题,系统性的分析了熔焊图像的特点,提
神经组织的缺陷及损伤修复是目前临床治疗的一大难题。使用神经组织工程支架引导神经修复的方法是自体移植手术的一条有效可行的替代途径,基于电刺激(ES)对神经修复的促进作用,电活性神经组织工程支架材料在这一领域具有很好的应用潜力。再生丝素蛋白(RSF)和聚(3,4-乙烯二氧噻吩)(PEDOT)具有突出的生物相容性和导电性等特点,有望用于制备性能优良并具有独特优势的RSF/PEDOT类电活性神经组织工程支
近年来,纳米医学的发展推动了癌症诊疗的进步。在众多纳米平台中,树状大分子由于具有独特的物化性能广泛地被用作纳米载体平台装载功能性造影剂或药物,用于癌症的诊断和治疗。然而,随着研究不断深入,研究者发现单代树状大分子作为载体平台,具有不可克服的局限性,难以满足肿瘤精准诊断和高效治疗的要求。例如,低代树状大分子虽然合成简单,细胞毒性小,但是载药能力有限,基因传递效率低;高代树状大分子虽然基因传递效率高,
随着经济发展,建筑环境舒适性需求和建筑能耗之间的矛盾日益激化。在提升建筑环境舒适性的同时,如何减少建筑能耗是一个亟需待解决的问题。太阳能作为清洁能源,为减少建筑能耗提供了一个切实可行的能量来源途径。太阳辐射不仅可以通过窗户直接进入到建筑房间内部,也可以通过实体墙逐渐进入到室内。虽然实体墙吸收太阳能的效率较低,但实体墙接受太阳辐射的面积约是窗户面积的1.2~3倍,因此,通过实体墙进入房间内部的太阳能
由于冬季供暖政策和相关设计标准的规定,我国夏热冬冷地区的居住建筑迄今为止未布置类似中国北方地区的集中连续供暖系统。这一气候区冬季的典型气候特征为潮湿寒冷,故建筑的室内热环境质量较差。为改善较差的室内热环境,近10年来,家庭独立供暖在夏热冬冷地区已逐渐成为一种普遍的行为,并具有“人在供暖、人离停暖”的按需间歇供暖模式特征。另一方面,由于这一地区夏季炎热并存在梅雨季,故环境空气通常表现为高温高湿的特征
Spinning is the textile industry’s lifeblood industry,where the fibre is drawn out,twisted,and wrapped onto a bobbin by using state-of-the-art twisting techniques.Textile intelligent spinning systems
学位
近年来,一维纳米材料因其出色的结构与功能特性得到迅速发展,逐渐成为功能纳米器件领域的重要组成部分。它的合成方法多样,包括液相法、模板法、电化学沉积法等,但由于合成后排布的无序性,一维纳米材料无法在功能器件中发挥其独特的结构优势,因此对一维纳米材料进行有序化组装是其应用的重要一环。界面工程指通过调控溶剂之间的表面张力、密度等参数,在多相界面处发生的物理化学过程。它作为一种纳米材料的组装方法,具有高效