【摘 要】
:
近年来,随着高压、特高压直流输电的发展,交直流深度耦合,加之电力电子设备的广泛应用,电网中电磁环境愈加复杂,谐波污染愈加严重。变压器作为电网中的核心电力设备之一,负责电能的变送及传输。铁心是变压器的关键部件,其损耗值在变压器总损耗中占比较大,因此,准确计算变压器铁心在复杂谐波激励下的损耗对于优化大型电力变压器的结构及提高电力系统中电能的传输效率至关重要。变压器铁心由数以万计的硅钢片叠积而成,硅钢片
【基金项目】
:
国家自然科学基金(51677052);
论文部分内容阅读
近年来,随着高压、特高压直流输电的发展,交直流深度耦合,加之电力电子设备的广泛应用,电网中电磁环境愈加复杂,谐波污染愈加严重。变压器作为电网中的核心电力设备之一,负责电能的变送及传输。铁心是变压器的关键部件,其损耗值在变压器总损耗中占比较大,因此,准确计算变压器铁心在复杂谐波激励下的损耗对于优化大型电力变压器的结构及提高电力系统中电能的传输效率至关重要。变压器铁心由数以万计的硅钢片叠积而成,硅钢片的磁性能具有非线性、各向异性的特点,这使得铁心磁化特性和损耗特性的分析具有一定难度。同时,复杂谐波激励下,变压器铁心的磁化特性和损耗特性呈现出与正弦激励下不同的特征。基于以上两点,本文围绕谐波激励下变压器铁心磁化特性和损耗特性进行分析,并针对铁心损耗的计算展开具体工作。论文的主要工作如下:1.硅钢材料磁性能的测量是铁心损耗计算的基础工作。本文搭建了基于Epstein方圈法的硅钢片磁性能测量系统,对铁心材料的磁性能进行测量。引入传统铁心工艺系数来弥补单片硅钢片和叠片铁心磁性能的差异对损耗计算的影响,同时,考虑到磁通密度在铁心“接缝区”和“柱轭区”分布不均的特点,对传统铁心工艺系数进行改进。2.搭建谐波激励下铁心磁损耗测试平台,对谐波激励下铁心的磁化特性及损耗特性进行分析,并进一步考察谐波特征量(谐波含量、谐波阶次及谐波相位)对变压器铁心磁化特性和损耗特性的影响规律。3.分析原始Steinmetz公式用于谐波激励下铁心损耗计算时的适用性,对Steinmetz修正公式、广义Steinmetz公式、广义Steinmetz改进公式及波形系数法进行理论推导。针对复杂谐波激励下变压器铁心损耗的计算问题,结合改进铁心工艺系数考察以上公式的准确性。基于广义Steinmetz改进公式的计算结果,总结不同谐波含量、谐波阶次及谐波相位对变压器铁心磁损耗的影响规律。4.采用均匀化处理方法对叠片铁心建模,并考虑硅钢材料弱磁区的磁化特性,实现了谐波激励下叠片铁心电磁场的准确求解。为了考虑局部磁滞回环对铁心损耗的影响,利用有限元软件Mag Net,结合改进铁心工艺系数,提出了一种可以考虑局部磁滞回环的铁心损耗计算方法,将该铁心损耗计算方法的计算结果与广义Steinmetz改进公式的计算结果进行对比。
其他文献
随着机器人技术和自动化水平的提升,工业机器人已成为智能制造领域的核心装备,而定位精度是评价机器人性能好坏的关键指标之一。由于加工制造误差、齿轮齿隙以及运动学参数误差等原因,工业机器人末端会产生定位误差,从而影响工业机器人定位精度的可靠性。相比重复定位精度,工业机器人的绝对定位精度更低,因此提高绝对定位精度更能推动工业机器人的广泛应用。基于Kriging模型,本文提出一种主动学习的可靠性分析方法,经
长非编码RNAs(long non-coding RNAs,lncRNAs)是一类长度超过200nt的重要非编码RNA。尽管lncRNAs缺乏直接编码蛋白质的能力,但其展现出的复杂多样的调控功能使其成为解读人类生理活动机制的窗口,这使得lncRNAs功能研究成为当今lncRNAs研究工作的一项重要内容。随着测序技术的飞速发展和生物信息技术不断进步,lncRNAs数量增长迅速。但受生物实验的时间成本
高温钛合金因其优异的高温强度、高温抗蠕变性以及低密度等优势,在航空航天发动机领域具有广泛的应用价值。当前钛合金结构件不断向大型、复杂和薄壁方向发展,这为铸造钛合金创造了巨大的发展空间。然而,目前国内铸造高温钛合金的最高耐受温度仅为450℃-500℃,在600℃应用条件下与国外差距明显。因此开发能耐600℃及更高温度的铸造钛合金已成为制约我国高速飞行器发展的关键。同时,航空航天发动机组件工况条件恶劣
汽车智能驾驶技术的进步与发展,推动着汽车工业的变革与转型升级。自动泊车技术作为汽车智能驾驶技术的重要组成部分,推动了城市交通中“泊车难”问题的解决,减少了城市交通的局部拥堵,节省了泊车时间,提高了城市生活效率,在一定程度上促进了城市的发展。传统的自动泊车技术利用超声波雷达对停车位进行检测识别,对目标车位周围的停驻车辆依赖严重,目标车位周围没有停驻车辆时则无法对车位进行检测识别。基于计算机视觉的自动
随着纳米技术的不断发展,纳米材料在不同领域得到了广泛的应用,包括化妆品、电子产品到药品,而金纳米粒子具有良好的生物相容性并且比较容易进行表面改性,因此常常被当作药物载体用于肺部疾病的治疗。当金纳米粒子通过呼吸进入肺泡后,会与肺表面活性物质(LS)相互作用,LS是由脂质、蛋白质组成的单层膜,是肺部抵御外来物质的第一道屏障。因此,了解金纳米粒子与LS单层膜之间的相互作用至关重要。尽管目前已经进行了大量
近些年来,智能机械手的研究与应用得到了广泛的关注,并成为工业生产与日常生活中不可或缺的组成部分。为保证机械手可靠、灵巧地的完成预定的任务,需要为智能机械手装配具有指尖信息感知能力的传感器。触觉感知技术是智能机械手自主控制和智能决策的基础与支撑,而力觉感知则是感知的重要研究内容。本文在总结前人研究的基础上用Galfenol合金为核心传感材料,基于理论建模与实验分析相结合的方式,开发一种适应于智能机械
外骨骼机器人是现在机器人研究领域的热点,其主要关键技术为步态实时识别技术。当前步态识别方法的信息采集和识别算法的设计主要以足底压力,惯性传感器等为主要研究方向。其中压力传感器由于其抗干扰性较强和极快的响应速度而备受关注,相应的足底压力传感器位置点确定成为了一项关键研究问题。同时,随着大数据的发展,机器学习算法在步态识别中也得到了青睐,然而参数选择问题也随之产生。本文针对以上两个关键问题进行了研究,
服务机器人构建场景的语义地图是服务机器人认知环境的基础,是机器人实现自主决策的前提,而机器人利用语义信息进行导航是语义地图构建的最终目的,是机器人与人和环境产生交互的一种体现。机器人如何利用环境中的语义信息像人类一样认知环境,构建环境的语义地图,并利用语义信息进行导航是机器人领域的核心问题之一。本文基于SLAM(Simultaneous Localization And Mapping)技术和深度
基于金属有机框架(Metal organic Frameworks,MOFs)纳米材料构建比色法生物传感器,实现对目标物质的快速、准确和灵敏检测是当今研究的热点内容。本文从设计构建中空的MOFs微囊和磁性核壳结构的MOF基纳米酶(MOF-based nanozymes,MOFzymes)出发,利用合理方式固定化酶构建比色法生物传感器,不仅能保证检测结果的准确性和灵敏度,还能实现传感器的重复利用,对