论文部分内容阅读
随着风电规模的增加,风电在给我们带来多方面的利益的同时,也给电网的运行带来了挑战,当风电穿透功率超过一定值之后,就会严重影响到电能质量和电力系统的稳定运行,而且会危及常规发电方式,主要表现为电压和频率会有较大幅度的波动。更严重的是,当风电机组由于风速过大而退出运行时,可能会给电力系统造成难以承受的冲击。因此,对风电的输出功率进行准确的预测,不仅可以减少风电并网给电网带来的冲击力和不稳定性,同时也可以合理的调配电力资源,使得风电发挥更大的作用。
本论文在当前国内外风电功率研究现状的基础上,对风功率短期预测的方法展开了进一步的研究,论文具体工作如下:
(1)分析风电机组风速-功率模型,研究天气变化对对风电机组实际功率输出的影响,建立风电场功率短期预测的BP神经网络模型,运用数值天气预报(NWP)数据作为输入,风电场实际输出功率为网络输出目标值,对BP神经网络进行训练,用训练好的BP神经网络对未来12小时、24小时、48小时和72小时的风电场输出功率进行预测,预测平方绝对误差分别为:6.33%、8.81%、13.67%和13.03%;
(2)利用LM算法优化BP神经网络模型,用优化好的模型和标准的BP网络模型进行比较,结果显示,优化后的模型训练速度更快,预测精度更高;
(3)利用迭代自组织数据分析技术(ISODATA)聚类算法,对NWP数据进行聚类运算,利用聚类的NWP数据对优化后的BP神经网络进行训练,用训练后的BP神经网络对风电场功率进行预测,得到聚类后的BP神经网络预测平方绝对误差分别为:6.31%、7.16%、10.54%和9.98%。