论文部分内容阅读
求解二维椭圆界面问题的扩展杂交间断有限元方法
【机 构】
:
湖南师范大学
【出 处】
:
湖南师范大学
【发表日期】
:
2018年01期
其他文献
本文在部分Melnikov条件(非共振条件)和Riissmann非退化条件的假设之下,研究了哈密顿系统的低维不变环面的Gevrey光滑性问题.文章共分四个部分:引言,主要结论,主要结论的证明和附
Cayley图由A.Cayley在1878年提出的,当时是为了解释群的生成元和定义关系.由于它构造的简单性、高度的对称性和品种的多样性,越来越受到图论学者的重视,成为群与图的一个重要的
Waring-Goldbach问题是堆垒数论中的经典问题.1938年,Hua在[6]中证明了几乎所有满足必要同余条件的正整数n都可以表示成n=p21+p22+pk3,(0.1)其中k≥2,pi为素数.用Ak表示满足必要
本文着重研究完备平行平均曲率子流形的Ln/2曲率空隙和几何刚性问题. 本文第一部分主要研究欧氏空间和球面中完备的平行平均曲率子流形的Ln/2-pinching问题,获得如下结果:设