低含量TiBw增强TC18基复合材料组织与性能研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:chenhua99
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文基于低能球磨与原位自生技术,首次选用TC18钛合金为基体,TiB2作为B源,成功制备了低含量(≤2.0vol.%)TiBw/TC18网状结构复合材料。利用热挤压变形与热处理,进一步对复合材料的组织进行调控。研究了不同状态下复合材料的拉伸性能与断裂机制。利用光学显微镜(OM)、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)以及透射电子显微镜(TEM)对不同状态、不同增强体含量的材料进行组织观察,研究不同状态下复合材料的组织特征与组织变化。结合断口观察、塑性变形行为观察与拉伸性能测试分析不同状态下材料的断裂机制与性能变化。组织观察表明,烧结态材料中短棒状的TiBw在基体中呈准连续网状分布,TiBw的加入使原始β晶粒的尺寸由合金的815μm减小到复合材料的70μm;拉伸测试结果表明,随着TiBw含量的增加烧结态复合材料的抗拉强度与塑性均降低,0.5vol.%TiBw/TC18抗拉强度为1176MPa,延伸率15.8%,均优于TC18合金,性能优异;烧结态复合材料的断口类似于纯金属杯锥状断口,且只有纤维区与剪切唇,属于典型的微孔聚集型断裂。低含量TiBw/TC18复合材料的基体在变形过程中出现明显塑性变形的痕迹,在晶界处TiBw的断裂是裂纹萌生主要原因。TiBw含量达到2.0vol.%时裂纹集结扩展更容易。热挤压使β晶粒尺寸从烧结态的70μm细化到挤压态的40μm左右,TiBw定向排列。挤压态复合材料由于缺少α析出相的增强而强度明显低于烧结态材料,但是塑性成倍增加。其中1.0vol.%TiBw/TC18的抗拉强度为926MPa,延伸率为29.4%,拥有最佳的强塑性匹配。烧结态复合材料固溶时效热处理后,原始β晶粒尺寸与烧结态相同,集束组织消失。强度随着时效温度的升高而降低,随着固溶温度的升高而升高。TiBw含量的增加可以显著提高强度却迅速降低延伸率,经过热处理后0.5vol.%TiBw/TC18抗拉强度为1356MPa,延伸率为7.2%。挤压态复合材料经过热处理后原始β晶粒尺寸明显小于烧结态材料。双重退火热处理后1.0vol.%TiBw/TC18的抗拉强度为1195MPa的同时保持23.5%的延伸率;固溶时效热处理后1.0vol.%TiBw/TC18的强度达到1384MPa,延伸率为12%,得到优异的强塑性匹配;双重退火热处理后材料的断裂也属于微孔聚集型断裂。裂纹可以在三叉晶界点萌生,也可以在GBα和αp与βt的界面处萌生,裂纹的扩展伴随塑性断裂的发生。
其他文献
本文首先综述了纤维增强地聚合物在高温下的组织结构、力学和热学性能演化机制,包括阐明纤维增强地聚合物在高温后的质量损失、热膨胀和热导率等热性能;接着,分析了不同类型纤维增强地聚合物在高温后残余抗压强度的力学性能关系,并根据微观结构和成分的变化揭示了地聚合物受热后的微观结构和矿物学特征。其次,本文采用强搅拌法制备了E-玻璃纤维增强地质聚合物复合材料(E-GF/GP),系统研究了E-玻璃纤维含量和长度对
随着清洁电能的生产成本不断降低,寻找一种经济可靠的储存和转化闲置电能的方式迫在眉睫。氢气是一种环境友好的高能量密度能源,不仅可以作为燃料直接燃烧,还可以作为化工原料转化成其它高价值化学品。因此,在众多电能储存方式中,电解水制氢以其简单高效的工艺受到相关研究人员的广泛关注。过渡金属磷化物因其良好的电催化析氢性能、优良的导电性以及低廉的生产成本等特点被认为是理想的电催化析氢材料,然而常见的过渡金属磷化
聚对苯撑苯并二噁唑(PBO)纤维具有高强韧、耐高温、不易断裂等特点,是一种非常优秀的高性能有机纤维。但PBO纤维表面惰性,与树脂基体相容性差,界面性能弱,极大的限制了PBO纤维在复合材料领域的应用。基于此,本文提出了一种同时增加纤维单丝强度与其界面强度的PBO纤维表面改性方法。采用原位交联溶胀法在PBO纤维表面涂覆聚乙烯醇(PVA)/环氧交联涂层,确立了对PBO纤维较温和的表面改性方式。采用红外光
石油是重要的能源和化工原料。世界稠油探明储量约为8150亿吨,占全球石油剩余储量的70%。注汽锅炉是目前进行稠油开采的重要设备,注汽锅炉的蒸汽干度决定了稠油开采的效率和质量,蒸汽干度越高,单位蒸汽所携带的热量越多,稠油开采率就越高;如果蒸汽干度过高,会使炉管温度急剧升高,蒸汽中的盐类成分析出固结在管壁上形成垢,导致传热恶化并形成堵塞,影响锅炉安全运行,甚至可能引发爆管事故。因此,注汽锅炉蒸汽干度检
随着信息技术的飞速发展,电磁污染愈来愈严重,防治电磁污染的主要手段就是发展电磁屏蔽材料,反射和吸收是其中的两种主要实现手段,而吸波材料因具有绿色不会导致二次电磁污染的优势而备受瞩目。在众多的吸波材料中,碳材料具有轻质、多极化、介电性能可调的优势,是近年来吸波领域研究的热点材料。但是,在之前的研究中,碳材料往往制备成型方法复杂、成本较高,同时,由于吸波机理单一,碳材料的有效吸收带宽较窄,因此限制了碳
在实际工程应用中,相比于传统的弹塑性材料,当粘弹性材料受到外载荷作用时,材料响应不仅取决于载荷大小,而且与加载时间相关,例如:混凝土、高聚合材料、高应变率下的金属材料等。对于这种具有弹性性质和粘性性质的粘弹性材料,弹性力学没有考虑时间效应的影响,因此不能精确地描述其力学性能。近些年来,如何合理地描述粘弹性材料的力学性能成为研究热点,特别是诸如混凝土等广泛使用的具有典型多尺度特征的材料。鉴于此,本文
新媒体时代,中医药漫画作为对青少年产生深远影响的内容载体,对我国中医药文化的传播起着至关重要的作用。本研究基于对40部中医药题材漫画读者评论的统计分析,从不同维度探究中医药漫画出版物的文化传播效果并为这类题材选题的出版献计献策。
石墨烯(Graphene,Gr)具有优异的力学性能、导热性能、导电性能,是理想的复合材料增强体。粉末冶金是常用的制备石墨烯增强金属基复合材料的方法。由于球磨过程和原位自生过程中中石墨烯会产生较多的缺陷,导致了其性能的下降。因此,本研究通过分子动力学模拟的方法模拟了缺陷修复的过程,并采用化学气相沉积(CVD)以及等离子体增强化学气相沉积(PECVD)的方法对石墨烯中的缺陷进行修复工艺的探索。本文模拟
藻蓝蛋白(C-phycocyanin,C-PC),一种天然生物可直接食用且具荧光的蛋白。因其独特的物理生物特性而被广泛应用于食品、保健、医疗、生物靶向治疗等多个方面。国际上多将藻蓝蛋白的纯度划分为食品级、分析级、试剂级三个等级,其纯度决定了价格,纯度越高则应用价格越高,寻找更为高效、简捷、绿色的藻蓝蛋白分离纯化方法是具有重要的理论和现实意义的。低共熔溶剂(Deep Eutectic Solvent
形状记忆聚合物(Shape Memory Materials,SMP)是一种新型智能材料,可以在外界刺激下发生变形,且形状可控。由于驱动方式多变、形变量大、成本低等,其在诸多领域都取得了非常广泛的应用。生物质材料不仅有着环保、来源广泛、生物相容性好的优势,其性能也非常独特,比如降解性强、质轻、强度高等,经常用于制作复合材料。基于此,本文将骨外固定器作为应用背景,为克服现有固定器笨重、环保性差、透气