论文部分内容阅读
相比于传统的荧光生物传感器,基于WGM(Whispering-gallery mode)微腔的光学生物传感器因具有无需荧光标记、灵敏度高、结构紧凑、低成本、高Q值等优点,在生物制药、医学诊断、环境监测、食品安全等领域有着重要的应用价值。本论文围绕基于回音壁模式的多种硅基光学生物传感器及其无标记传感特性展开,为实现高性能的无标记光学生物传感技术奠定基础,主要工作包括以下几个方面:首先,介绍了回音壁模式微腔的理论基础,包括谐振条件、耦合机制和模式分析。介绍WGM微腔的主要参数,如自由光谱范围(Free Spectral Range,FSR),消光比(Extinction Ratio,ER)、品质因子(Quality Factor,Q)等,重点分析了耦合参数对微腔性能的影响。第二,介绍了基于回音壁微腔的无标记生物传感器工作原理,并利用微环、微盘腔耦合直波导,构建生物传感器,分析其传感性能。设计了一种基于游标效应的双跑道螺旋耦合谐振腔,重点分析谐振腔中各参数对其传感性能的影响,优化了谐振腔传感性能,证明其在生物传感领域的优势。第三,研究了回音壁生物传感器的噪声(如热噪声、光源噪声)对传感器性能的影响。为了消除噪声的干扰,提高检测精度,设计了有效抑制传感器噪声的差分传感阵列与多路并行检测阵列,并描述了多通道检测的优势。第四,介绍集成光学生物传感芯片,包括免疫分析原理和生物传感器的表面修饰技术。描述了微流体通道在构建集成生物传感芯片的重要作用。基于分子吸附理论和稀溶液中的物质传输理论,利用多物理场耦合分析方法,模拟了微流体在微通道中流过时,传感器表面对生物分子的吸附作用,研究了微通道结构参数以及流体的流动状态对分子吸附的影响。最后,研究了基于电子束光刻的微腔、微流体通道制作工艺,制作了氮化硅微盘生物传感器,完成传感性能测试。