钛合金叶片经强流脉冲电子束处理后表层的残余应力研究

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:iqwanifir
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
这项工作的主题是相关的,具有重要的实际意义。航空燃气涡轮发动机的生产是飞机制造最优先和知识密集的领域之一。航空设备生产的现代趋势旨在减少制造产品的技术周期,提高其技术和经济特点,并降低生产成本。这些趋势的实施是可能的,由于使用新的材料,现代化的制造方法,各种保护涂层的应用到其表面和减少技术操作的数量。现代GTE的高负荷零件和组件的主要要求是高硬度和耐腐蚀性,这取决于零件的表面层的条件。本论文致力于研究高电流脉冲电子束对钛合金高压压缩机叶片表面层的影响,解决样品表面层残余应力形成问题,以及提高耐热性、耐腐蚀性和疲劳强这项工作的主要目的是研究大电流脉冲电子束对钛合金表面层残余应力形成的影响。以及开发了一种全新的辐照方法及其实验测试。该技术包括同时照射样品的所有工作表面,以便在表面层中形成均匀的残余压缩应力分布,这将改善叶片的特性,并避免精加工热处理。这项工作由五个主要部分组成。首先,对大电流脉冲电子束表面层改性领域现有研究文献进行了深入回顾,回顾了各国电子束技术的发展水平。第二部分描述了照射样品的技术,详细描述了电子束加速器及其工作原理,以及根据热力学和动力学分析方法的曝光模式。第三部分讨论了钛合金表层在大电流脉冲电子束照射时发生的物理和化学过程。第四部分描述了测量表面层的主要特性的方法。根据这些研究结果,本文的最后部分介绍了样品辐照的结果。对产品所有表面和表面进行同时照射的全新方法的效率进行了实验证明。根据研究结果,HCPEB照射技术有助于形成样品的硬化表面层,并改善粗糙度。工作的主要目标已经实现–它是形成一个均匀分布的残余压缩应力的表面层,这使你能够放弃最后的热处理,这将显著降低劳动强度和成本的产品,而不会
其他文献
带内筋筒形构件在航空航天领域有着重要的应用,采用流动旋压工艺可以整体成形该类构件,成形件具有综合力学性能好、可靠性高等优点,然而室温下所能旋压成形的内筋高度不足成为一个难点。本文提出将超声振动引入流旋工艺的新方法,利用超声振动的声软化效应与表面效应,可以降低材料的变形抗力与流动时所受的阻力,进而提高内筋高度。但是,超声振动与流旋工艺耦合作用下,材料的流变行为更为复杂,如何调控合适的工艺参数,以获得
创新结构和良好的外形是设计高承压能力超压气球的关键所在。本文综合考虑增强结构与囊体外形两方面因素对超压气球抗压能力的影响,提出一种滑动索膜超压气球设计方案。结构部分,使用与囊体相对滑动的绳索替代“南瓜球”中固定于囊体表面的加强筋,能更好地传递载荷且避免了加强筋与囊体间焊接工艺对强度的削弱;外形方面,该方案主要分为初始设计、外形调整两部分,首先,参考增强绳索和囊体上冯?米塞斯应力水平的理论解,初步设
为研究缝合对三维机织复合材料/钛合金混杂板单搭接接头力学性能与失效机理的影响,对7组缝合密度、缝线纤维束规格以及钛合金板上预制的缝合孔直径各不相同的单搭接试样进行了剪切实验。通过加载条件下的原位细观实验观察,获得了不同缝合参数下接头的失效模式,给出了对应载荷-位移曲线上特征点的损伤形貌。结果表明,增加碳纤维缝线的丝束规格以及增加缝合密度均能提高混杂接头的失效载荷,且增加缝合密度比增加碳纤维缝线的丝
随着物联网的发展,各种传感器时序信号记录信息越来越完善,采样频率越来越高,业界需要一种既准确又快速的方法对时序数据进行数据挖掘从而为下游任务服务。时序数据重建是指通过训练模型忽略信号“噪声”来学习一组数据的表示,尝试从简化编码中生成尽可能接近其原始输入的表示形式。而异常检测则是时序信号重建的一个应用,也是航天领域研究的热门方向。本文主要应用自然语言处理中的注意力机制来处理时序数据,包括重建、异常检
航空发动机在过渡工作状态下,叶尖泄漏流及换热特性的急剧变化导致涡轮叶片叶尖承受了严重的热负荷。本文以典型高压涡轮凹槽叶尖转子叶片作为研究对象,首先运用非稳态流固耦合方法进行数值模拟计算,分别研究了进口总温、进口气流角和进口总压过渡态变化以及这三个边界条件同时变化下,涡轮叶尖换热系数和叶栅气动效率的变化情况;其次运用准稳态计算方法,模拟过渡态过程中间状态的换热及气动状态,并通过实验获得的叶尖换热系数
蜂窝夹芯结构被广泛的应用于飞机的机翼前缘、舵面、发动机整流罩等处,因此易承受较强的气动噪声。为了分析该结构在随机噪声载荷下的疲劳寿命,本文采用了功率谱密度法(Power Spectral Density,PSD),并结合P-M(Palmgren-Miner)线性累积损伤理论、S-N曲线、概率密度函数等计算结构危险点的声疲劳寿命。本文的研究内容为:1.引入温度对材料力学性能的影响,计算在不同温度、不
复合材料夹层结构由于其密度小,比强度和比刚度高而被广泛应用于各个领域,但是在使用过程中易遭受低速冲击后产生损伤。含损伤的复合材料夹层结构其强度会大大降低,严重影响其使用安全性,因此,研究夹层结构在低速冲击后的抗疲劳特性具有必要的现实意义。本文对三种不同铺层方案的复合材料夹层结构进行了低速冲击试验,先确定各个铺层试样产生1mm凹坑所需冲击能量,再以此冲击能量冲击其余试样以保证所有试样产生等效的损伤。
本文提出了一种针对机身尾段多层蒙皮复合材料的铺层方法。对多层复合材料结构,在初步设计前,通常需要建立对应的理论和数值模型,并进行计算。本文由于面向一般性的复合材料,因此提出铺层设计方法同样适用于其他航空部件。本文的研究方法是,建立机身蒙皮的强度理论模型和数值模型,并依此对结构参数进行优化设计。本文展示了理论计算的结果,并提出了一个选择多层复合材料结构建设性、技术性方案的方法性原则。本文使用带桁条、
碳纤维复合材料有着比强度大,比刚度高,性能可设计性等特殊优势,故成为了航空航天领域比较优先考虑的材料之一,而碳纤维复合材料结构在使用时极易受到冲击损伤的影响,而冲击损伤会影响到复合材料的剩余强度,本文主要研究了碳纤维曲板受到冲击后的损伤失效模式与含冲击损伤的复合材料加筋板的弯曲失效模式:(1)基于连续介质损伤理论的应变能等效假设推导出复合材料损伤后的刚度阵,利用三维Hashin准则判断单元失效,并
民机作为现代常用出行交通工具,一直是研究的重点,而起落架是飞机的一个极其重要的组成部分,它的工作状况对飞机的运行安全造成了直接影响。但是,目前民机起落架的设计工作主要集中在局部的结构、机构、系统可靠性以及可靠性方面算法的改进等方面,对于以起落架的需求和预防故障为出发点的概念设计研究尚未涉及。在这种情况下,本文尝试结合质量功能展开QFD和故障模式与影响分析FMEA方法应用到民机起落架的研究工作中,进